18 resultados para cell surface
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The genus Copidognathus includes one-third of the species of Halacaridae described to date. This article describes spermiogenesis, sperm cell morphology and accompanying secretions from three species of Copidognathus. Initial spermatids have electron-dense cytoplasm with scattered mitochondria, a well-developed Golgi body, and nuclei with patches of heterochromatin. The cytoplasm and nuclei of these cells undergo intense swelling. The second spermatids are large electron-translucent cells, with small mitochondria in row along the remains of the endoplasmatic reticulum. In the succeeding stage, most of the cytoplasmatic structures and mitochondria have disappeared or have undergone profound transformations. Nuclei and cells elongate and chromatin begins to condense near the nuclear envelope. An acrosomal complex appears at the tip of the nucleus. The acrosomal filament is thick and runs the entire length of the nucleus. Plasmalemmal invaginations at the cell surface give rise to tubules filled with an electron-dense material. Sperm cell maturation is completed in the ventral portion of the germinal part, near the testicular lumen. As a final step in spermiogenesis, cytoplasm of the last spermatid undergoes a moderate condensation and the cariotheca disappears. Mature sperm cells were found in a matrix of ""simple"" and ""complex"" corpuscles, the latter consisting of flattened, spindle-shaped secreted bodies. Rather than in individual sperm aggregates, spermatozoa were contained in a single droplet inside the vas deferens, on a large secretion mass, structured as rows of platelets sunk in a fine grained matrix. Each mature sperm cell is covered by a thick secreted coat. In contrast to the genera Rhombognathus and other Actinotrichida, Copidognathus displays a set of features that must be regarded as apomorphic. The absence of usual mitochondria, the presence of electro-dense tubules and secretions similar to those present in Thalassarachna and Halacarellus, and the pattern of nuclear condensation are possibly shared apomorphies with these latter genera. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
We have previously shown that pathogenic leptospiral strains are able to bind C4b binding protein (C4BP). Surface-bound C4BP retains its cofactor activity, indicating that acquisition of this complement regulator may contribute to leptospiral serum resistance. In the present study, the abilities of seven recombinant putative leptospiral outer membrane proteins to interact with C4BP were evaluated. The protein encoded by LIC11947 interacted with this human complement regulator in a dose-dependent manner. The cofactor activity of C4BP bound to immobilized recombinant LIC11947 (rLIC11947) was confirmed by detecting factor I-mediated cleavage of C4b. rLIC11947 was therefore named LcpA (for leptospiral complement regulator-acquiring protein A). LcpA was shown to be an outer membrane protein by using immunoelectron microscopy, cell surface proteolysis, and Triton X-114 fractionation. The gene coding for LcpA is conserved among pathogenic leptospiral strains. This is the first characterization of a Leptospira surface protein that binds to the human complement regulator C4BP in a manner that allows this important regulator to control complement system activation mediated either by the classical pathway or by the lectin pathway. This newly identified protein may play a role in immune evasion by Leptospira spp. and may therefore represent a target for the development of a human vaccine against leptospirosis.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Periodontal tissue engineering is a complex process requiring the regeneration of bone, cementum, and periodontal ligament (PDL). Since cementum regeneration is poorly understood, we used a dog model of dental pulpal necrosis and in vitro cellular wounding and mineralization assays to determine the mechanism of action of calcium hydroxide, Ca(OH)(2), in cementogenesis. Laser capture microdissection (LCM) followed by qRT-PCR were used to assay responses of periapical tissues to Ca(OH)(2) treatment. Additionally, viability, proliferation, migration, and mineralization responses of human mesenchymal PDL cells to Ca(OH)(2) were assayed. Finally, biochemical inhibitors and siRNA were used to investigate Ca(OH)(2)-mediated signaling in PDL cell differentiation. In vivo, Ca(OH)(2)-treated teeth formed a neocementum in a STRO-1- and cementum protein-1 (CEMP1)-positive cellular environment. LCM-harvested tissues adjacent to the neocementum exhibited higher mRNA levels for CEMP1, integrin-binding sialoprotein, and Runx2 than central PDL cells. In vitro, Ca(OH)(2) and CEMP1 promoted STRO-1-positive cell proliferation, migration, and wound closure. Ca(OH)(2) stimulated expression of the cementum-specific proteins CEMP1 and PTPLA/CAP in an ERK-dependent manner. Lastly, Ca(OH)(2) stimulated mineralization by CEMP1-positive cells. Blocking CEMP1 and ERK function abolished Ca(OH)(2)-induced mineralization, confirming a role for CEMP1 and ERK in the process. Ca(OH)(2) promotes cementogenesis and recruits STRO-1-positive mesenchymal PDL cells to undergo cementoblastic differentiation and mineralization via a CEMP1- and ERK-dependent pathway.
Resumo:
The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.
Resumo:
The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fukutin-related protein (FKRP) is a protein involved in the glycosylation of cell surface molecules. Pathogenic mutations in the FKRP gene cause both the more severe congenital muscular dystrophy Type 1C and the milder Limb-Girdle Type 21 form (LGMD21). Here we report muscle histological alterations and the analysis of 11 muscle proteins: dystrophin, four sarcoglycans, calpain 3, dysferlin, telethonin, collagen VI, alpha-DG, and alpha 2-laminin, in muscle biopsies from 13 unrelated LGMD21 patients with 10 different FKRP mutations. In all, a typical dystrophic pattern was observed. In eight patients, a high frequency of rimmed vacuoles was also found. A variable degree of alpha 2-laminin deficiency was detected in 12 patients through immunofluorescence analysis, and 10 patients presented a-DG deficiency on sarcolemmal membranes. Additionally, through Western blot analysis, deficiency of calpain 3 and dystrophin bands was found in four and two patients, respectively. All the remaining proteins showed a similar pattern to normal controls. These results suggest that, in our population of LGMD21 patients, different mutations in the FKRP gene are associated with several secondary muscle protein reductions, and the deficiencies of alpha 2-laminin and alpha-DG on sections are prevalent, independently of mutation type or clinical severity.
Resumo:
Damage following ischemia and reperfusion (I/R) is common in the intestine and can be caused during abdominal surgery, in several disease states and following intestinal transplantation. Most studies have concentrated on damage to the mucosa, although published evidence also points to effects on neurons. Moreover, alterations of neuronally controlled functions of the intestine persist after I/R. The present study was designed to investigate the time course of damage to neurons and the selectivity of the effect of I/R damage for specific types of enteric neurons. A branch of the superior mesenteric artery supplying the distal ileum of anesthetised guinea pigs was occluded for 1 h and the animals were allowed to recover for 2 h to 4 weeks before tissue was taken for the immunohistochemical localization of markers of specific neuron types in tissues from sham and I/R animals. The dendrites of neurons with nitric oxide synthase (NOS) immunoreactivity, which are inhibitory motor neurons and interneurons, were distorted and swollen by 24 h after I/R and remained enlarged up to 28 days. The total neuron profile areas (cell body plus dendrites) increased by 25%, but the sizes of cell bodies did not change significantly. Neurons of type II morphology (intrinsic primary afferent neurons), revealed by NeuN immunoreactivity, were transiently reduced in cell size, at 24 h and 7 days. These neurons also showed signs of minor cell surface blebbing. Calretinin neurons, many of which are excitatory motor neurons, were unaffected. Thus, this study revealed a selective damage to NOS neurons that was observed at 24 h and persisted up to 4 weeks, without a significant change in the relative numbers of NOS neurons.
Resumo:
Long-term effects of angiotensin II (Ang II) on vacuolar H(+)-ATPase were studied in a SV40-transformed cell line derived from rat proximal tubules (IRPTC). Using pH(i) measurements with the fluorescent dye BCECF, the hormone increased Na(+)-independent pH recovery rate from an NH(4)Cl pulse from 0.066 +/- 0.014 pH U/min (n = 7) to 0.14 +/- 0.021 pH U/min (n = 13; p < 0.05) in 10 h Ang II (10(-9) M)-treated cells. The increased activity of H(+)-ATPase did not involve changes in mRNA or protein abundance of the B2 subunit but increased cell surface expression of the V-ATPase. Inhibition of tyrosine kinase by genistein blocked Ang II-dependent stimulation of H(+)-ATPase. Inhibition of phosphatidylinositol-3-kinase (PI3K) by wortmannin and of p38 mitogen-activated protein kinase (MAPK) by SB 203580 also blocked this effect. Thus, long-term exposure of IRPTC cells to Ang II causes upregulation of H(+)-ATPase activity due, at least in part, to increased B2 cell surface expression. This regulatory pathway is dependent on mechanisms involving tyrosine kinase, p38 MAPK, and PI3K activation.
Resumo:
During the rat submandibular gland (SMG) development, organogenesis and cytodifferentiation depend on the actin cytoskeleton, which is regulated by small Rho GTPases. These proteins link cell surface receptors to pathways that regulate cell motility, polarity, gene expression, vesicular trafficking, proliferation and apoptosis. The aim of this study was to evaluate, by immunohistochemistry, the distribution pattern of RhoA, RhoB, RhoC, Rac1 and Cdc42 during cytodifferentiation of the rat SMG and in male adults. All GTPases were found in epithelial and mesenchymal tissues throughout gland development. Rac1 appeared to be important for parenchyma expansion at the beginning of cytodifferentiation, while RhoC, Cdc42 and the inactive phosphorylated form of Rac1 seemed associated with lumen formation and cell polarization in terminal tubules. RhoA and RhoB labeling was evident throughout development. All GTPases were differentially expressed in the adult gland, suggesting that they play specific roles during differentiation and function of the rat SMG.
Resumo:
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Resumo:
Prion protein (PrPC), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C)-STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C), with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126-1136
Resumo:
Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The ubiquitous Pseudallescheria boydii (anamorph Scedosporium apiospermum) is a saprophytic filamentous fungus recognized as a potent etiologic agent of a wide variety of infections in immunocompromised as well as in immunocompetent patients. Very little is known about the virulence factors expressed by this fungal pathogen. The present review provides an overview of recent discoveries related to the identification and biochemical characterization of potential virulence attributes produced by P. boydii, with special emphasis on surface and released molecules. These structures include polysaccharides (glucans), glycopeptides (peptidorhamnomannans), glycolipids (glucosylceramides) and hydrolytic enzymes (proteases, phosphatases and superoxide dismutase), which have been implicated in some fundamental cellular processes in P. boydii including growth, differentiation and interaction with host molecules. Elucidation of the structure of cell surface components as well as the secreted molecules, especially those that function as virulence determinants, is of great relevance to understand the pathogenic mechanisms of P. boydii.
Resumo:
The activity of the Na(+)/H(+) exchanger NHE3 is regulated by a number of factors including parathyroid hormone (PTH). In the current study, we used a renal epithelial cell line, the opossum kidney (OKP) cell, to elucidate the mechanisms underlying the long-term effects of PTH on NHE3 transport activity and expression. We observed that NHE3 activity was reduced 6 h after addition of PTH, and this reduction persisted almost unaltered after 24 h. The decrease in activity was associated with diminished NHE3 cell surface expression at 6, 16, and 24 h after PTH addition, total cellular NHE3 protein at 16 and 24 h, and NHE3 mRNA abundance at 24 h. The lower levels of NHE3 mRNA were associated to a small, but significant, decrease in mRNA stability. Additionally, by analyzing the rat NHE3 gene promoter activity in OKP cells, we verified that the regulatory region spanning the segment -152 to +55 was mildly reduced under the influence of PTH. This effect was completely abolished by the presence of the PKA inhibitor KT 5720. In conclusion, long-term exposure to PTH results in reduction of NHE3 mRNA levels due to a PKA-dependent inhibitory effect on the NHE3 promoter and a small reduction of mRNA half-life, and decrease in the total amount of protein which is preceded by endocytosis of the apical surface NHE3. The decreased NHE3 expression is likely to be responsible for the reduction of sodium, bicarbonate, and fluid reabsorption in the proximal tubule consistently perceived in experimental models of PTH disorders.