10 resultados para cadmium sulfide
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
CdS is one of the most important II-VI semiconductors, with applications in solar cells, optoelectronics and electronic devices. CdS nanoparticles were synthesized via microwave-assisted solvothermal technique. Structural and morphological characterization revealed the presence of crystalline structures presenting single phase with different morphologies such as ""nanoflowers"" and nanoplates depending on the solvent used. Optical characterization was made by diffuse reflectance and photoluminescence spectroscopy, revealing the influence of the different solvents on the optical properties due to structural defects generated during synthesis. It is proposed that these defects are related to sulfur vacancies, with higher concentration of defects for the sample synthesized in ethylene glycol in comparison with the one synthesized in ethylene diamine. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Cadmium (Cd) in air, drinking water and food has the potential to affect the health of people, mainly those who live in highly industrialized regions. Cd affects placental function, can cross the placental barrier and directly modify fetal development. Once the organism is particularly susceptible to the exposition to the Cd during the perinatal period, and that this metal can be excreted in the milk, the aim of the present work was to study the effects of the constant exposition to drinkable water containing low levels of Cd during the lactation, on the salivary glands of the rat. Female rats received ad libitum drinking water containing 300mg/l of CdCl2 throughout the whole lactation. Control animals received a similar volume of water without Cd. Lactant rats (21 day old) were killed by lethal dose of anesthetic. The salivary glands were separated, fixed in ""alfac"" solution for 24 h, and serially sectioned. The 6 mu m thick sections were stained with hematoxylin and eosin. Nuclear glandular parameters were estimated, as well as cytoplasm and cell volume, nucleus/cytoplasm ratio, number and surface density, diameters and cell thickness. Mean body weight was 34.86 g for the control group and 18.56 g for the Cd-treated group. Histologically, the glandular acini were significantly smaller, the gland ducts were similar in both groups studied. The connective tissue was more abundant. In conclusion, the salivary glands (submandibular, parotid and sublingual) showed retarded growth after Cd intoxication.
Resumo:
Structural and conformational properties of the molecule bis[isopropoxy(thiocarbonyl)]sulfide, [(CH(3))(2)CHOC(S)](2)S, have been studied by vibrational spectroscopy (IR and Raman) and quantum chemical calculations (HF and B3LYP with 6-31+G* basis sets). The crystal and molecular structure of the title compound was determined by X-ray diffraction methods. It crystallizes in the monoclinic C2/c space group with a = 8.4007(4), b = 13.5936(5), c = 10.3648(5) angstrom, beta = 106.024(4)degrees and Z = 4 molecules per unit cell. The molecules are sited on a crystallographic twofold axis passing through the sulphide atom and arranged in layers perpendicular to the b-axis. The solid state IR and Raman spectra of the compound give no sign of any other rotamer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
Cadmium chloride complex of 1-furoyl-3-cyclohexylthiourea (CyTu) was prepared and characterized by elemental analysis, IR, and Raman spectroscopy. The structure of the complex was determined by single crystal X-ray methods (space group Bbab, a = 20.918(1), b = 23.532(1), c = 23.571(1) angstrom, = = , Z = 8). Each cadmium has distorted octahedral geometry, coordinated by two chlorides and the thiocarbonyl sulfurs from four CyTu molecules. All the spectroscopic data are consistent with coordination of CyTu by sulfur to cadmium.
Resumo:
Caulobacter crescentus sigma(E) belongs to the ECF (extracytoplasmic function) subfamily of RNA polymerase sigma factors, whose members regulate gene expression in response to distinct environmental stresses. During physiological growth conditions, data indicate that sigma(E) is maintained in reduced levels due to the action of ChrR, a negative regulator of rpoE gene expression and function. However, once bacterial cells are exposed to cadmium, organic hydroperoxide, singlet oxygen or UV-A irradiation, transcription of rpoE is induced in a sigma(E)-dependent manner. Site-directed mutagenesis indicated that residue C188 in ChrR is critical for the cadmium response while residues H140 and H142 are required for the bacterial response to organic hydroperoxide, singlet oxygen and UV-A. Global transcriptional analysis showed that sigma(E) regulates genes involved in protecting cells against oxidative damages. A combination of transcriptional start site identification and promoter prediction revealed that some of these genes contain a putative sigma(E)-dependent motif in their upstream regions. Furthermore, deletion of rpoE and two sigma(E)-dependent genes (cfaS and hsp20) impairs Caulobacter survival when singlet oxygen is constantly generated in the cells.
Resumo:
In the present study, cadmium and lead in the muscle, lung, liver and kidney of dolphins (Sotalia guianensis and Stenella clymene) of the Bahia coast in the northwest of Brazil were determined by graphite furnace atomic absorption spectrometry. Samples were digested using a diluted oxidant mixture (HNO(3) + H(2)O(2)) with a microwave heating program performed in five steps. The optimized temperatures and chemical modifier for the pyrolysis and atomization were 700 degrees C, 1400 degrees C and Pd plus Mg for Cd, and 900 degrees C, 1800 degrees C and NH(4)H(2)PO(4) for Pb, respectively. Characteristic masses and limits of detections (n = 20, 3 sigma) for Cd and Pb were 1.6 and 9.0 pg and 0.82 ng g(-1) and 0.50 ng g(-1), respectively. Repeatability ranged from 0.87 to 8.22% for Cd and 4.31 to 8.09% for Pb. The found concentrations presented no statistical differences at the 95% confidence level when compared with the ICP OES methods. Addition and recovery tests were also performed and the results ranged between 87 and 112% for both elements. Samples of cetacean Dolphinidae (S. guianensis and S. clymene) were analyzed, and the higher concentrations ranged from 0.09 to 46.2 mu g g(-1) for Cd and 0.04 to 0.47 mu g g(-1) for Pb in liver, and from 0.133 to 277 mu g g(-1) for Cd in the kidney. (C) 2010 Elsevier By. All rights reserved.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Spatiotemporal pattern formation in the electrocatalytic oxidation of sulfide on a platinum disk is investigated using electrochemical methods and a charge-coupled device (CCD) camera simultaneously. The system is characterized by different oscillatory regions spread over a wide potential range. An additional series resistor and a large electrode area facilitate observation of multiple regions of kinetic instabilities along the current/potential curve. Spatiotemporal patterns on the working electrode, such as fronts, pulses, spirals, twinkling eyes, labyrinthine stripes, and alternating synchronized deposition and dissolution, are observed at different operating conditions of series resistance and sweep rate.