36 resultados para brushless machines

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related changes in running kinematics have been reported in the literature using classical inferential statistics. However, this approach has been hampered by the increased number of biomechanical gait variables reported and subsequently the lack of differences presented in these studies. Data mining techniques have been applied in recent biomedical studies to solve this problem using a more general approach. In the present work, we re-analyzed lower extremity running kinematic data of 17 young and 17 elderly male runners using the Support Vector Machine (SVM) classification approach. In total, 31 kinematic variables were extracted to train the classification algorithm and test the generalized performance. The results revealed different accuracy rates across three different kernel methods adopted in the classifier, with the linear kernel performing the best. A subsequent forward feature selection algorithm demonstrated that with only six features, the linear kernel SVM achieved 100% classification performance rate, showing that these features provided powerful combined information to distinguish age groups. The results of the present work demonstrate potential in applying this approach to improve knowledge about the age-related differences in running gait biomechanics and encourages the use of the SVM in other clinical contexts. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State of Sao Paulo Research Foundation (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few years, the evolution of fieldbus and computers networks allowed the integration of different communication systems involving both production single cells and production cells, as well as other systems for business intelligence, supervision and control. Several well-adopted communication technologies exist today for public and non-public networks. Since most of the industrial applications are time-critical, the requirements of communication systems for remote control differ from common applications for computer networks accessing the Internet, such as Web, e-mail and file transfer. The solution proposed and outlined in this work is called CyberOPC. It includes the study and the implementation of a new open communication system for remote control of industrial CNC machines, making the transmission delay for time-critical control data shorter than other OPC-based solutions, and fulfilling cyber security requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the behaviour of two different control structures of automatic voltage regulators of synchronous machines equipped with static excitation systems. These systems have a fully controlled thyristor bridge that supplies DC current to the rotor winding. The rectifier bridge is fed by the stator terminals through a step-down transformer. The first control structure, named ""Direct Control"", has a single proportional-integral (PI) regulator that compares stator voltage setpoint with measured voltage and acts directly on the thyristor bridge`s firing angle. This control structure is usually employed in commercial excitation systems for hydrogenerators. The second structure, named ""Cascade Control"", was inspired on control loops of commercial DC motor drives. Such drives employ two PIs in a cascade arrangement, the external PI deals with the motor speed while the internal one regulates the armature current. In the adaptation proposed, the external PI compares setpoint with the actual stator voltage and produces the setpoint to the internal PI-loop which controls the field current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a back-electromotive force (BEMF)-based technique of detection for sensorless brushless direct current motor (BLDCM) drivers. The BLDCM has been chosen as the energy converter in rotary or pulsatile blood pumps that use electrical motors for pumping. However, in order to operate properly, the BLDCM driver needs to know the shaft position. Usually, that information is obtained through a set of Hall sensors assembled close to the rotor and connected to the electronic controller by wires. Sometimes, a large distance between the motor and controller makes the system susceptible to interference on the sensor signal because of winding current switching. Thus, the goal of the sensorless technique presented in this study is to avoid this problem. First, the operation of BLDCM was evaluated on the electronic simulator PSpice. Then, a BEMF detector circuitry was assembled in our laboratories. For the tests, a sensor-dependent system was assembled where the direct comparison between the Hall sensors signals and the detected signals was performed. The obtained results showed that the output sensorless detector signals are very similar to the Hall signals at speeds of more than 2500 rpm. Therefore, the sensorless technique is recommended as a responsible or redundant system to be used in rotary blood pumps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of functional magnetic resonance imaging (fMRI) in neuroscience studies has increased enormously in the last decade. Although primarily used to map brain regions activated by specific stimuli, many studies have shown that fMRI can also be useful in identifying interactions between brain regions (functional and effective connectivity). Despite the widespread use of fMRI as a research tool, clinical applications of brain connectivity as studied by fMRI are not well established. One possible explanation is the lack of normal pattern, and intersubject variability-two variables that are still largely uncharacterized in most patient populations of interest. In the current study, we combine the identification of functional connectivity networks extracted by using Spearman partial correlation with the use of a one-class support vector machine in order construct a normative database. An application of this approach is illustrated using an fMRI dataset of 43 healthy Subjects performing a visual working memory task. In addition, the relationships between the results obtained and behavioral data are explored. Hum Brain Mapp 30:1068-1076, 2009. (C) 2008 Wiley-Liss. Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional magnetic resonance imaging (fMRI) is currently one of the most widely used methods for studying human brain function in vivo. Although many different approaches to fMRI analysis are available, the most widely used methods employ so called ""mass-univariate"" modeling of responses in a voxel-by-voxel fashion to construct activation maps. However, it is well known that many brain processes involve networks of interacting regions and for this reason multivariate analyses might seem to be attractive alternatives to univariate approaches. The current paper focuses on one multivariate application of statistical learning theory: the statistical discrimination maps (SDM) based on support vector machine, and seeks to establish some possible interpretations when the results differ from univariate `approaches. In fact, when there are changes not only on the activation level of two conditions but also on functional connectivity, SDM seems more informative. We addressed this question using both simulations and applications to real data. We have shown that the combined use of univariate approaches and SDM yields significant new insights into brain activations not available using univariate methods alone. In the application to a visual working memory fMRI data, we demonstrated that the interaction among brain regions play a role in SDM`s power to detect discriminative voxels. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In testing from a Finite State Machine (FSM), the generation of test suites which guarantee full fault detection, known as complete test suites, has been a long-standing research topic. In this paper, we present conditions that are sufficient for a test suite to be complete. We demonstrate that the existing conditions are special cases of the proposed ones. An algorithm that checks whether a given test suite is complete is given. The experimental results show that the algorithm can be used for relatively large FSMs and test suites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O artigo investiga algumas das tendências da arquitetura gerada por fábricas - galpões industriais, moradias, igrejas, escolas, clubes etc. -, erguida no Brasil entre as duas últimas décadas do século XIX e as primeiras do XX. Apoia-se em amplo inventário, como base para um esforço de análise que se propõe a identificar os temas e usos predominantes dos ornatos aplicados a construções geradas por fábricas, as referências historicistas mobilizadas e eventuais rupturas de signos arquitetônicos tipológicos, e, no limite, a abolição de ornatos e dos referidos signos. Assim, de um lado, trata da penetração da linguagem eclética nessas construções, investigando o repertório formal utilizado em diferentes tipologias. De outro, trata da simultânea difusão de uma estética tipicamente fabril, fundamentada em noções de economia, eficiência, utilidade e funcionalidade. Mostra como tais noções se expressam ora em uma simplificação ou ausência de ornatos, ora no uso de ornatos cujos temas remetem ao mundo das máquinas; às vezes, no distanciamento ou abandono de signos arquitetônicos tipológicos consagrados; ou, ainda, no emprego de materiais produzidos industrialmente e que se difundiram a partir, sobretudo, da arquitetura de fábricas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last 15 years, the use of doubly fed induction machines in modern variable-speed wind turbines has increased rapidly. This development has been driven by the cost reduction as well as the low-loss generation of Insulated Gate Bipolar Transistors (IGBT). According to new grid code requirements, wind turbines must remain connected to the grid during grid disturbances. Moreover, they must also contribute to voltage support during and after grid faults. The crowbar system is essential to avoid the disconnection of the doubly fed induction wind generators from the network during faults. The insertion of the crowbar in the rotor circuits for a short period of time enables a more efficient terminal voltage control. As a general rule, the activation and the deactivation of the crowbar system is based only on the DC-link voltage level of the back-to-back converters. In this context, the authors discuss the critical rotor speed to analyze the instability of doubly fed induction generators during grid faults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this Study was to describe the financial conditions of forestry contractors, concerning life quality aspects, condition of work and equipments, operational costs, and economic credit to invest in new technologies. Five companies had been analyzed, with an annual income between US$ 400,000.00 and US$ 1,720,000.00, with an average of US$ 950,000.00. The number of employees varied between 33 and 181, and the companies were classified in terms of size as: one small, two average, and two big. The main difficulties to invest in new machines were high financial taxes, more than 12% an year, and a lack of long term contracts to guarantee the payment capability. It was observed that the contractors did not consider the capital remuneration and a correct depreciation of machines, resulting in an average machine life higher than 10 years. The final conclusions were that the costs were above the paid values for the services, when computed the depreciation and capital remuneration, with negative results In the financial analyzes of three companies. Finally, the mechanization process increased the workers life quality, however, the annual income was around US$ 2,112.00 per worker, approximately 39% lower than the average Brazilian population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The skewness sk(G) of a graph G = (V, E) is the smallest integer sk(G) >= 0 such that a planar graph can be obtained from G by the removal of sk(C) edges. The splitting number sp(G) of C is the smallest integer sp(G) >= 0 such that a planar graph can be obtained from G by sp(G) vertex splitting operations. The vertex deletion vd(G) of G is the smallest integer vd(G) >= 0 such that a planar graph can be obtained from G by the removal of vd(G) vertices. Regular toroidal meshes are popular topologies for the connection networks of SIMD parallel machines. The best known of these meshes is the rectangular toroidal mesh C(m) x C(n) for which is known the skewness, the splitting number and the vertex deletion. In this work we consider two related families: a triangulation Tc(m) x c(n) of C(m) x C(n) in the torus, and an hexagonal mesh Hc(m) x c(n), the dual of Tc(m) x c(n) in the torus. It is established that sp(Tc(m) x c(n)) = vd(Tc(m) x c(n) = sk(Hc(m) x c(n)) = sp(Hc(m) x c(n)) = vd(Hc(m) x c(n)) = min{m, n} and that sk(Tc(m) x c(n)) = 2 min {m, n}.