11 resultados para banded preconditioner
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A new species of cubozoan jellyfish has been discovered in shallow waters of Bonaire, Netherlands ( Dutch Caribbean). Thus far, approximately 50 sightings of the species, known commonly as the Bonaire banded box jelly, are recorded, and three specimens have been collected. Three physical encounters between humans and the species have been reported. Available evidence suggests that a serious sting is inflicted by this medusa. To increase awareness of the scientific disciplines of systematics and taxonomy, the public has been involved in naming this new species. The Bonaire banded box jelly, Tamoya ohboya, n. sp., can be distinguished from its close relatives T. haplonema from Brazil and T. sp. from the southeastern United States by differences in tentacle coloration, cnidome, and mitochondrial gene sequences. Tamoya ohboya n. sp. possesses striking dark brown to reddish-orange banded tentacles, nematocyst warts that densely cover the animal, and a deep stomach. We provide a detailed comparison of nematocyst data from Tamoya ohboya n. sp., T. haplonema from Brazil, and T. sp. from the Gulf of Mexico.
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%-20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (similar to 3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.
Resumo:
Background: Aplasia of the mullerian ducts leads to absence of the uterine corpus, uterine cervix, and upper (superior) vagina. Patients with mullerian aplasia (MA) often exhibit additional clinical features such as renal, vertebral and cardiac defects. A number of different syndromes have been associated with MA, and in most cases its aetiology remains poorly understood. Objective and methods: 14 syndromic patients with MA and 46, XX G-banded karyotype were screened for DNA copy number changes by similar to 1 Mb whole genome bacterial artificial chromosome (BAC) array based comparative genomic hybridisation (CGH). The detected alterations were validated by an independent method and further mapped by high resolution oligo-arrays. Results: Submicroscopic genomic imbalances affecting the 1q21.1, 17q12, 22q11.21, and Xq21.31 chromosome regions were detected in four probands. Presence of the alterations in the normal mother of one patient suggests incomplete penetrance and/or variable expressivity. Conclusion: 4 of the 14 patients (29%) were found to have cryptic genomic alterations. The imbalances on 22q11.21 support recent findings by us and others that alterations in this chromosome region may result in impairment of mullerian duct development. The remaining imbalances indicate involvement of previously unknown chromosome regions in MA, and point specifically to LHX1 and KLHL4 as candidate genes.
Influence of Radiotransmitters on Fecal Glucocorticoid Levels of Free-Ranging Male American Kestrels
Resumo:
Although radiotelemetry is considered a valuable technique for ornithological field studies, several assumptions have been made about the impact that transmitters may have on the estimation of behavioral, ecological, and reproductive parameters. To assess the potential effects of backpack radiotransmitters, we captured and assigned 8 male American kestrels (Falco sparverius) into 2 groups: radiotagged (n = 6) and control individuals (leg-banded, n = 2). Thereafter, we collected feces approximately 2 hours after capture (day -1), and subsequently during days 0 (releasing day), 4, 7, 15, 30, 40, and 55. Prior to fecal analysis, we validated the corticosterone enzyme immunoassay using standard procedures (e. g., parallelism, dose-response curve), and we confirmed physiological significance of fecal glucocorticoid metabolites through adrenocorticotropin challenge, which induced an increase of 4-fold (446.10 +/- 60.73 ng/g) above baseline (114.27 +/- 15.23 ng/g) within 4 hours (P < 0.001). Both groups exhibited a significant increase in fecal glucocorticoids during day 0 (P < 0.001), but concentrations returned to preattachment values within 4 days. Fecal glucocorticoid concentrations did not differ between samples of radiotagged and leg-banded kestrels (P > 0.05). In spite of the small number of monitored subjects, these findings suggested that radiotransmitters did not affect adrenocortical activity in these male American kestrels. (JOURNAL OF WILDLIFE MANAGEMENT 73(5): 772-778; 2009)
Resumo:
The Santa Rosa and Sauce Guacho plutons are two post-collisional peraluminous Late Devonian to Early Carboniferous leucogranites that intruded the banded schists of the Ancasti Formation. The leucogranites are composed of microcline phenocrysts along with quartz, plagioclase, muscovite, biotite, ilmenite, tourmaline, apatite, monazite and zircon. Their geochemical composition is consistent with S-type granites and mineralogically they belong to MPG granites (muscovite-peraluminous granites). It is proposed that granite magma generation was related to shear zones that concentrated fluids in the metasedimentary crust during a collision or transcurrent tectonics. U-Pb analyses on monazite gave an age of 369.8 +/- 5.3 Ma, while Sm/Nd isotopic data yield epsilon(Nd(t)) values of -5.3 for Sauce Guacho and -5.7 for Santa Rosa indicating crustal provenance. Nd model ages between 1,544 and 1,571 Ma are within the range of magmatic rocks from the Lower Ordovician Famatinian Arc in the Central Sierras Pampeanas.
Resumo:
Important concentrations of tourmaline occur as gold-bearing stratiform tourmalinites and in mineralized quartz-tourmaline veins at the Tapera Grande and Quartzito gold prospects in the Mesoproterozoic Serra do Itaberaba Group, central Ribeira Belt (Sao Paulo State, SE Brazil). The main rock types in both prospects constitute the volcanic-sedimentary Morro da Pedra Preta Formation, which formed in a submarine back-arc setting. At Tapera Grande, the volcanic-sedimentary sequence is composed of metabasic and metavolcaniclastic rocks, graphitic and sulfur-rich metapelites, banded iron formation, metandesite, metarhyolite, calcsilicates, tourmalinites and metahydrothermalites derived from mafic and felsic rocks. The Mesoproterozoic rocks at Quartzito prospect are lithologically similar but they have been affected by Neoproterozoic faulting and shearing and by the emplacement of granitic rocks, resulting in the formation of tourmaline-rich quartz-carbonate veins with gold and base metal mineralization. We conducted a chemical and B-isotope study of tourmalines in order to better understand the origin of the stratiform tourmalinites in the Morro da Pedra Preta Formation and their relationship with gold mineralization. The overall range of delta(11)B values obtained for the tourmalinite and vein tourmalines is between - 15%. and -5 parts per thousand, with the tourmalinites failing at the low end of this range (-15 to -8 parts per thousand). Such values are typical for continental crust and inconsistent with a primary marine boron signature as expected from the submarine-exhalative model for the gold prospects. We conclude from this that tourmaline formed or recrystallized from crustal fluids related to the amphibolite-grade metamorphism which affected the Serra do Itaberaba Group and that gold deposition occurred syn- to post-peak metamorphism by phase immiscibility, as attested by fluid inclusions in Tapera Grande tourmalinite tourmaline and quartz. The vein-hosted tourmalines at Quartzito have isotopically variable boron signatures, with heavier delta(11)B values of -5 parts per thousand to -8 parts per thousand for acicular green tourmalines and lighter values (-15 parts per thousand to -7 parts per thousand for light blue, Ti-firee tourmaline from quartz-carbonate veins). We attribute the heavier boron to fluids derived from the volcano-sedimentary rocks of marine affinity whereas the lighter boron was contributed by crustal fluids related to the granitoids or metasediments in the continental crust. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Rio Apa cratonic fragment crops out in Mato Grosso do Sul State of Brazil and in northeastern Paraguay. It comprises Paleo-Mesoproterozoic medium grade metamorphic rocks, intruded by granitic rocks, and is covered by the Neoproterozoic deposits of the Corumbi and Itapocurni Groups. Eastward it is bound by the southern portion of the Paraguay belt. In this work, more than 100 isotopic determinations, including U-Pb SHRIMP zircon ages, Rb-Sr and Sm-Nd whole-rock determinations, as well as K-Ar and Ar-Ar mineral ages, were reassessed in order to obtain a complete picture of its regional geological history. The tectonic evolution of the Rio Apa Craton starts with the formation of a series of magmatic arc complexes. The oldest U-Pb SHRIMP zircon age comes from a banded gneiss collected in the northern part of the region, with an age of 1950 +/- 23 Ma. The large granitic intrusion of the Alumiador Batholith yielded a U-Pb zircon age of 1839 +/- 33 Ma, and from the southeastern part of the area two orthogneisses gave zircon U-Pb ages of 1774 +/- 26 Ma and 1721 +/- 25 Ma. These may be coeval with the Alto Terere metamorphic rocks of the northeastern corner, intruded in their turn by the Baia das Garcas granitic rocks, one of them yielding a zircon U-Pb age of 1754 +/- 49 Ma. The original magmatic protoliths of these rocks involved some crustal component, as indicated by the Sm-Nd TDm model ages, between 1.9 and 2.5 Ga. Regional Sr isotopic homogenization, associated with tectonic deformation and medium-grade metamorphism occurred at approximately 1670 Ma, as suggested by Rb-Sr whole rock reference isochrons. Finally, at 1300 Ma ago, the Ar work indicates that the Rio Apa Craton was affected by widespread regional heating, when the temperature probably exceeded 350 degrees C. Geographic distribution, age and isotopic signature of the fithotectonic units suggest the existence of a major suture separating two different tectonic domains, juxtaposed at about 1670 Ma. From that time on, the unified Rio Apa continental block behaved as one coherent and stable tectonic unit. It correlates well with the SW corner of the Amazonian Craton, where the medium-grade rocks of the Juruena-Rio Negro tectonic province, with ages between 1600 and 1780 Ma, were reworked at about 1300 Ma. Looking at the largest scale, the Rio Apa Craton is probably attached to the larger Amazonian Craton, and the actual configuration of southwestern South America is possibly due to a complex arrangement of allochthonous blocks such as the Arequipa, Antofalla and Pampia, with different sizes, that may have originated as disrupted parts of either Laurentia or Amazonia, and were trapped during later collisions of these continental masses.
Resumo:
Several major iron deposits occur in the Quadrilatero Ferrifero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Caue Formation, regionally called itabirite, was transformed into high- (Fe >64%) and lowgrade (30%
Resumo:
The Jacadigo Group contains one of the largest sedimentary iron and associated manganese deposits of the Neoproterozoic. Despite its great relevance, no detailed sedimentological study concerning the unit has been carried out to date. Here we present detailed sedimentological data and interpretation on depositional systems, system tracts, external controls on basin evolution, basin configuration and regional tectonic setting of the Jacadigo Basin. Six depositional systems were recognized: (I) an alluvial fan system; (II) a siliciclastic lacustrine system; (III) a fan-delta system; (IV) a bedload-dominated river system; (V) an iron formation-dominated lacustrine or marine gulf system; and (VI) a rimmed carbonate platform system. The interpreted depositional systems are related to three tectonic system tracts. The first four depositional systems are mainly made of continental siliciclastics and refer to the rift initiation to early rift climax stage; the lake/gulf system corresponds to the mid to late rift climax stage and the carbonate platform represents the immediate to late post rift stage (Bocaina Formation deposits of the Ediacaran fossil-bearing Corumba Group). The spatial distribution of the depositional systems and associated paleocurrent patterns indicate a WNW-ESE orientation of the master fault zone related to the formation of the Jacadigo Basin. Thus, the iron formations of the Jacadigo Group were deposited in a starved waterbody related to maximum fault displacement and accommodation rates in a restricted continental rift basin. The Fe-Si-Mn source was probably related to hydrothermal plume activity that reached the basin through the fault system during maximum fault displacement phases. Our results also suggest a restricted tectono-sedimentary setting for the type section of the Puga Formation. The Jacadigo Group and the Puga Formation, usually interpreted as glacial deposits, are readdressed here as basin margin gravitational deposits with no necessary relation to glacial processes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The main Precambrian tectonic units of Uruguay include the Piedra Alta tectonostratigraphic terrane (PATT) and Nico Perez tectonostratigraphic terrane (NPTT), separated by the Sarandi del Yi high-strain zone. Both terranes are well exposed in the Rio de La Plata craton (RPC). Although these tectonic units are geographically small, they record a wide span of geologic time. Therefore improved geological knowledge of this area provides a fuller understanding of the evolution of the core of South America. The PATT is constituted by low-to medium-grade metamorphic belts (ca. 2.1 Ga); its petrotectonic associations such as metavolcanic units, conglomerates, banded iron formations, and turbiditic deposits suggest a back-arc or a trench-basin setting. Also in the PATT, a late to post-orogenic, arc-related layered mafic complex (2.3-1.9 Ga), followed by A-type granites (2.08 Ga), and finally a taphrogenic mafic dike swarm (1.78 Ga) occur. The less thoroughly studied NPTT consists of Palaeoproterozoic high-grade metamorphic sequences (ca. 2.2 Ga), mylonites and postorogenic and rapakivi granites (1.75 Ga). The Brasiliano-Pan African orogeny affected this terrane. Neoproterozoic cover occurs in both tectonostratigraphic terranes, but is more developed in the NPTT. Over the past 15 years, new isotopic studies have improved our recognition of different tectonic events and associated processes, such as reactivation of shear zones and fluids circulation. Transamazonian and Statherian tectonic events were recognized in the RPC. Based on magmatism, deformation, basin development and metamorphism, we propose a scheme for the Precambrian tectonic evolution of Uruguay, which is summarized in the first Palaeoproterozoic tectonic map of the Rio de La Plata craton.