18 resultados para atomic physics, quantum physics, Penning traps, proton, magnetic moment

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a description of the Stem-Gerlach type experiments using only the concepts of classical electrodynamics and the Newton`s equations of motion. The quantization of the projections of the spin (or the projections of the magnetic dipole) is not introduced in our calculations. The main characteristic of our approach is a quantitative analysis of the motion of the magnetic atoms at the entrance of the magnetic field region. This study reveals a mechanism which modifies continuously the orientation of the magnetic dipole of the atom in a very short time interval, at the entrance of the magnetic field region. The mechanism is based on the conservation of the total energy associated with a magnetic dipole which moves in a non uniform magnetic field generated by an electromagnet. A detailed quantitative comparison with the (1922) Stem-Gerlach experiment and the didactical (1967) experiment by J.R. Zacharias is presented. We conclude, contrary to the original Stern-Gerlach statement, that the classical explanations are not ruled out by the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a model for the antihyperon polarization in high-energy proton-nucleus inclusive reactions, based on the final-state interactions between the antihyperons and other produced particles (predominantly pions). To formulate this idea, we use the previously obtained low-energy pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a hydrodynamic parametrization of the background matter, which expands and decouples at a certain freezeout temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline Ni nanowires with different diameters were electrodeposited in nanoporous anodized alumina membranes. First-Order Reversal Curves (FORCs) were measured and FORC distributions were calculated. They clearly showed an asymmetric behavior with a strong maximum at negative interaction fields, evidencing the dominant demagnetizing interactions which depend on the geometry of the nanowires. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the magnetic susceptibility of the frustrated pyrochlore magnet Gd(2)Sn(2)O(7) have been performed at temperatures below T = 5 K and in magnetic fields up to H = 12 T. The phase boundaries determined from these measurements are mapped out in an H-T phase diagram. In this gadolinium compound, where the crystal-field splitting is small and the exchange and dipolar energy are comparable, the Zeeman energy overcomes these competing energies, resulting in at least four magnetic phase transitions below 1 K. These data are compared against those for Gd(2)Ti(2)O(7) and will, we hope, stimulate further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on experimental studies of the Kondo physics and the development of non-Fermi-liquid scaling in UCu(4+x)Al(8-x) family. We studied 7 different compounds with compositions between x = 0 and 2. We measured electrical transport (down to 65 mK) and thermoelectric power (down to 1.8 K) as a function of temperature, hydrostatic pressure, and/or magnetic field. Compounds with Cu content below x = 1.25 exhibit long-range antiferromagnetic order at low temperatures. Magnetic order is suppressed with increasing Cu content and our data indicate a possible quantum critical point at x(cr) approximate to 1.15. For compounds with higher Cu content, non-Fermi-liquid behavior is observed. Non-Fermi-liquid scaling is inferred from electrical resistivity results for the x = 1.25 and 1.5 compounds. For compounds with even higher Cu content, a sharp kink occurs in the resistivity data at low temperatures, and this may be indicative of another quantum critical point that occurs at higher Cu compositions. For the magnetically ordered compounds, hydrostatic pressure is found to increase the Neel temperature, which can be understood in terms of the Kondo physics. For the non-magnetic compounds, application of a magnetic field promotes a tendency toward Fermi-liquid behavior. Thermoelectric power was analyzed using a two-band Lorentzian model, and the results indicate one fairly narrow band (10 meV and below) and a second broad band (around hundred meV). The results imply that there are two relevant energy scales that need to be considered for the physics in this family of compounds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, magnetic and hyperfine interaction measurements have been carried out on the novel compound La(3.5)Ru(4)O(13) prepared under two different atmospheres (air and oxygen flow). This compound is formed in the orthorhombic structure (space group Pmmm, # 47). The coexistence of the triple-layered perovskite-type planes (quasi-2D structure) and the rutile-like slabs (1D structure) leads to interesting magnetic and electronic properties in this compound. The magnetic susceptibility of this system shows a peak at T similar to 47 K associated with antiferromagnetic interactions. The Curie-Weiss behaviour of the susceptibility provides an effective magnetic moment consistent with Ru ions in low-spin state. Perturbed angular correlation measurements carried out with (111)Cd probe in the temperature range 10-60 K reveal only quadrupole interactions and indicate the occurrence of structural distortions for T<40K. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magneto-capacitance was studied in narrow miniband GaAs/AlGaAs superlattices where quasi-two dimensional electrons revealed the integer quantum Hall effect. The interwell tunneling was shown to reduce the effect of the quantization of the density of states on the capacitance of the superlattices. In such case the minimum of the capacitance observed at the filling factor nu = 2 was attributed to the decrease of the electron compressibility due to the formation of the incompressible quantized Hall phase. In accord with the theory this phase was found strongly inhomogeneous. The incompressible fraction of the quantized Hall phase was demonstrated to rapidly disappear with the increasing temperature. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that the conductance of a quantum wire side-coupled to a quantum dot, with a gate potential favoring the formation of a dot magnetic moment, is a universal function of the temperature. Universality prevails even if the currents through the dot and the wire interfere. We apply this result to the experimental data of Sato et al. (Phys. Rev. Lett., 95 (2005) 066801). Copyright (C) EPLA, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments at RHIC have shown that in 200 GeV Au-Au collisions, the Lambda and (Lambda) over bar hyperons are produced with very small polarizations (Abelev et al., 2007) [1], almost consistent with zero. These results can be understood in terms of a model that we proposed (Barros and Hama, 2008) [2]. In this Letter, we show how this model may be applied in such collisions, and also will discuss the relation of our results with other models, in order to explain the experimental data. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanocrystals are studied using theoretical calculations based on the density functional theory. The two main effects related to the reduced size of the nanocrystals are investigated: quantum confinement and a large surface:volume ratio. The effects of quantum confinement are studied by saturating the surface dangling bonds of the nanocrystals with hypothetical H atoms. To understand the effects of the surfaces of the nanocrystals, all saturation is removed and the system is relaxed to its minimum energy position. Several different surface motifs are reported, which should be observed experimentally. Spin-polarized calculations are performed in the nonsaturated nanocrystals, leading to different magnetic moments. We propose that this magnetic moment can be responsible for the intrinsic magnetism observed in ZnO nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall phase at the filling factor v = 2 was studied in the multilayer GaAs/AlGaAs heterostructures The disorder broaden Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure On the other hand. the quantized Hall phase of the weakly-coupled multilayers emitted an asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry indicates a formation of the Fermi Surface in the quantized Hall phase of the multilayer electron system due to the interlayer peicolation. A sharp decrease of the single-particle scattering time associated with the extended states oil the Fermi surface was observed at the filling factor v = 2. (C) 2009 Elsevier B.V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.