12 resultados para aromatic l-amino acid decarboxylase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-L-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RTPCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
In the present study, we evaluated the role of glutamatergic mechanisms in the retrotrapezoid nucleus (RTN) in changes of splanchnic sympathetic nerve discharge (sSND) and phrenic nerve discharge (PND) elicited by central and peripheral chemoreceptor activation. Mean arterial pressure (MAP), sSND and PND were recorded in urethane-anaesthetized, vagotomized, sino-aortic denervated and artificially ventilated male Wistar rats. Hypercapnia (10% CO(2)) increased MAP by 32 +/- 4 mmHg, sSND by 104 +/- 4% and PND amplitude by 101 +/- 5%. Responses to hypercapnia were reduced after bilateral injection of the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate (AP-5; 100mm in 50 nl) in the RTN (MAP increased by 16 +/- 3 mmHg, sSNDby 82 +/- 3% and PND amplitudeby 63 +/- 7%). Bilateral injection of the non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione(DNQX; 100 mm in 50 nl) and the metabotropic receptor antagonist (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG; 100mm in 50 nl) in the RTN did not affect sympathoexcitatory responses induced by hypercapnia. Injection of DNQX reduced hypercapnia-induced phrenic activation, whereas MCPG did not. In animals with intact carotid chemoreceptors, bilateral injections of AP-5 and DNQX in the RTN reduced increases in MAP, sSND and PND amplitude produced by intravenous injection of NaCN (50 mu g kg(-1)). Injection of MCPG in the RTN did not change responses produced by NaCN. These data indicate that RTN ionotropic glutamatergic receptors are involved in the sympathetic and respiratory responses produced by central and peripheral chemoreceptor activation.
Resumo:
Four species of marine benthic algae (Laurencia filiformis, L. intricata, Gracilaria domingensis and G. birdiae) that belong to the phylum Rhodophyta were collected in Espirito Santo State, Brazil and investigated concerning their biochemical composition (fatty acid, total lipid, soluble proteins, amino acid and ash). The total content of lipid (% dry weight) ranged from 1.1% to 6.2%: fatty acid from 0.7% to 1.0%: soluble protein from 4.6% to 18.3%, amino acid from 6.7% to 11.3% and ash from 22.5% to 38.4%. judging from their composition, the four species of algae appear to be potential sources of dietary proteins, amino acids, lipids and essential fatty acids for humans and animals. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We give a list of all possible schemes for performing amino acid and codon assignments in algebraic models for the genetic code, which are consistent with a few simple symmetry principles, in accordance with the spirit of the algebraic approach to the evolution of the genetic code proposed by Hornos and Hornos. Our results are complete in the sense of covering all the algebraic models that arise within this approach, whether based on Lie groups/Lie algebras, on Lie superalgebras or on finite groups.
Resumo:
Using a high-resolution reverse-phase liquid chromatography method we found that the tissues of the hermatypic coral Pocillopora capitato (collected in Santiago Bay, Mexico) contain a high diversity of primary and secondary mycosporine-like amino acids (MAAs) typical of some reef-building coral species: mycosporine-glycine, shinorine, porphyra-334, mycosporine-methylamine-serine, mycosporine-methylamine-threonine, palythine-serine, palythine and one additional novel predominant MAA, with an absorbance maximum of 320 nm. Here we document the isolation and characterization of this novel MAA from the coral A capitata. Using low multi-stage mass analyses of deuterated and non deuterated compounds, high-resolution mass analyses (Time of Flight, TOF) and other techniques, this novel compound was characterized as palythine-threonine. Palythine-threonine was also present in high concentrations in the corals Pocillopora eydouxi and Stylophora pistillata indicating a wider distribution of this MAA among reef-building corals. From structural considerations we suggest that palythine-threonine is formed by decarboxylation of porphyra-334 followed by demethylation of mycosporine-methylamine-threonine. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
When allowed to choose between different macronutrients, most animals display a strong attraction toward carbohydrates compared with proteins. It remains uncertain, however, whether this food selection pattern depends primarily on the sensory properties intrinsic to each nutrient or, alternatively, metabolic signals can act independently of the hedonic value of sweetness to stimulate elevated sugar intake. Here we show that Trpm5(-/-) mice, which lack the cellular mechanisms required for sweet and several forms of L-amino acid taste transduction, develop a robust preference for D-glucose compared with isocaloric L-serine independently of the perception of sweetness. Moreover, a close relationship was found between glucose oxidation and taste-independent nutrient intake levels, with animals increasing intake as a function of glucose oxidation rates. Furthermore, microdialysis measurements revealed nutrient-specific dopaminergic responses in accumbens and dorsal striatum during intragastric infusions of glucose or serine. Specifically, intragastric infusions of glucose induced significantly higher levels of dopamine release compared with isocaloric serine in both ventral and dorsal striatum. Intragastric stimulation of dopamine release seemed to depend on glucose utilization, because administration of an anti-metabolic glucose analog resulted in lower dopamine levels in striatum, an effect that was reversed by intravenous glucose infusions. Together, our findings suggest that carbohydrate-specific preferences can develop independently of taste quality or caloric load, an effect associated with the ability of a given nutrient to regulate glucose metabolism and stimulate brain dopamine centers.
Resumo:
The kinetics of hydrolysis of 1,8-N-butyl-naphthalimide (1,8-NBN) to 1,8-N-butyl-naphthalamide (1,8-NBAmide) and of 2,3-N-butyl-naphthalimide (2,3-NBN) to 2,3-N-butyl-naphthalamide (2,3-NBAmide), as well as the formation of the respective anhydrides from the amides were investigated in a wide acidity range. 1,8-NBN equilibrates with 1,8-NBAmide in mild alkali. Under the same conditions 2,3-NBN quantitatively yields 2,3-NBAmide. Over a wide range of acidities the reactions of the 1,8- and 2,3-N-butyl-naphthalamides (or imides) yield similar products but with widely different rates and at distinct pH`s. Anhydride formation in acid was demonstrated for 1,8-NBAmide. The reactions mechanisms were rationalized in the manifold pathways of ab initio calculations. The differences in rates and pH ranges in the reactions of the 1,8- and 2,3-N-butyl-naphthalamides were attributed to differences in the stability of the tetrahedral intermediates in alkali as well as the relative stabilities of the five and six-membered ring intermediates. The rate of carboxylic acid assisted 1,8-N-Butyl-naphthalamide hydrolysis is one of the largest described for amide hydrolysis models. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The aim of this work was to Study biochemical variations of IAA (indole-3-acetic acid), ABA (abscisic acid). PAs (polyamines) and amino acids at endogenous levels, during seed germination in Ocotea catharinensis. Seeds were germinated in a vermiculite substratum (100%), samples being collected after 15, 30 and 60 days. Total amino acid levels decreased during the first 15 days. Followed by all increment at the end of germination. Among amino acids, higher concentration was observed in asparagine, this being the predominant amino acid during the whole germination period. Total PAs (free + conjugated) content increased during the first 15 days, followed by a decrease and stabilization between 30 and 60 days of germination. Among the PAs, free putrescine levels rose during the first 15 days, followed by a drop and Stabilization up to 60 days of germination, while spermidine and spermine (spm) contents diminished during the period. Only spin was detected in a conjugated form, with increasing concentrations starting from 30 days on. IAA levels increased during tire first 15 days. followed by a decrease and stabilization until the end of germination (60 days), while ABA contents dwindled during the first 15 days, with similar Values until the end of germination.
Resumo:
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short-term insulin-induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg(-1)). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L-alanine (5 mM), L-lactate (2 mM)), L-glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L-lactate and pyruvate production from L-alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L-lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L-glutamine than livers front COG rats and, in the IIH rats, the production of glucose from L-glutamine was higher than that front L-alanine. The higher glucose production in livers from the IIH group. when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together. the results suggest that L-glutamine is better than L-alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright (C) 2008 John Wiley & Sons. Ltd.
Resumo:
Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.
Resumo:
Crithidia deanei, a monoxenic trypanosomatid, presents an endosymbiotic bacterium in its cytoplasm. Both the protozoan and the bacterium maintain intensive metabolic exchange, resulting in an interesting model to study the coevolution of metabolisms. The relevance of L-proline for the growth of C. deanei and its transport into these cells was studied. Both the endosymbiont-containing (wild) and the endosymbiont-free protozoa (aposymbiont or cured) strains, when grown in medium supplemented with L-proline, reached higher cell densities than those grown in unsupplemented media. We biochemically characterized the uptake of L-proline in both the wild (K(m)=0.153 +/- 0.022 mM, V(max)=0.239 +/- 0.011 nmol min(-1) per 4 x 10(7) cells) and the aposymbiont strains (K(m)=0.177 +/- 0.049 mM, V(max)=0.132 +/- 0.012 nmol min(-1) per 4 x 10(7) cells). These data suggest a single type of proline transporter whose activity is upregulated by the presence of the symbiotic bacterium. Proline transport was further characterized and was found to be insensitive to the extracellular concentration of Na(+), but sensitive to K(+) and pH. The abolition of proline uptake by respiratory chain inhibitors and valinomycin indicates that the proline transport in C. deanei is dependent on the plasma membrane K(+) gradient.
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.