19 resultados para antigen presenting cells (APCs)
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Antigen-presenting cells (APCs) control T-cell responses by multiple mechanisms, including the expression of co-stimulatory molecules and the production of cytokines and other mediators that control T-cell proliferation, survival and differentiation. Here, we demonstrate that soluble factor(s) produced by Toll-like receptor (TLR)-activated APCs suppress activation-induced cell death (AICD). This effect was observed in non-stimulated APCs, but it was significantly increased after lipopolysaccharide (LPS) treatment. Using different KO mice, we found that the LPS-induced protective factor is dependent on TLR4/MyD88. We identified the protective factor as prostaglandin E-2(PGE(2)) and showed that both APC-derived supernatants and PGE(2) prevented CD95L upregulation in T cells in response to TCR/CD3 stimulation, thereby avoiding both AICD and activated T cell killing of target macrophages. The PGE(2) receptors, EP2 and EP4, appear to be involved since pharmacological stimulation of these receptors mimics the protective effect on T cells and their respective antagonists interfere with the protection induced by either APCs derived or synthetic PGE(2). Finally, the engagement of EP2 and EP4 synergistically activates protein kinase A (PKA) and exchange protein directly activated by cAMP pathways to prevent AICD. Taken together, these results indicate that APCs can regulate T-cell levels of CD95L by releasing PGE2 in response to LPS through a TLR4/MyD88-dependent pathway, with consequences for both T cell and their own survival.
Resumo:
Dendritic cells (DCs), in peripheral tissues, derive mostly from blood precursors that differentiate into DCs under the influence of the local microenvironment. Monocytes constitute the main known DC precursors in blood and their infiltration into tissues is up-regulated during inflammation. During this process, the local production of mediators, like prostaglandins (PGs), influence significantly DC differentiation and function. In the present paper we show that treatment of blood adherent mononuclear cells with 10 mu M indomethacin, a dose achieved in human therapeutic settings, causes monocytes` progressive death but does not affect DCs viability or cell surface phenotype. This resistance of DCs was observed both for cells differentiated in vitro from blood monocytes and for a population with DCs characteristics already present in blood. This phenomenon could affect the local balance of antigen-presenting cells, influence the induction and pattern of immune responses developed under the treatment with non-steroidal anti-inflammatory drugs and, therefore, deserves further investigation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction Antigen-presenting cells, like dendritic cells (DCs) and macrophages, play a significant role in the induction of an immune response and an imbalance in the proportion of macrophages, immature and mature DCs within the tumor could affect significantly the immune response to cancer. DCs and macrophages can differentiate from monocytes, depending on the milieu, where cytokines, like interleukin (IL)-4 and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce DC differentiation and tumor necrosis factor (TNF)-alpha induce DC maturation. Thus, the aim of this work was to analyze by immunohistochemistry the presence of DCs (S100+ or CD1a+), macrophages (CD68+), IL-4 and TNF-alpha within the microenvironment of primary lung carcinomas. Results Higher frequencies of both immature DCs and macrophages were detected in the tumor-affected lung, when compared to the non-affected lung. Also, TNF-alpha-positive cells were more frequent, while IL-4-positive cells were less frequent in neoplastic tissues. This decreased frequency of mature DCs within the tumor was further confirmed by the lower frequency of CD14-CD80+ cells in cell suspensions obtained from the same lung tissues analyzed by flow cytometry. Conclusion These data are discussed and interpreted as the result of an environment that does not oppose monocyte differentiation into DCs, but that could impair DC maturation, thus affecting the induction of effective immune responses against the tumor.
Resumo:
Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.
Resumo:
Human monocytes can be differentiated into immature dendritic cells (DCs) in the presence of serum and cytokines. One of the main functions of immature DCs is to capture and process antigens. Following maturation, they differentiate into antigen presenting cells. The role of complement in the differentiation process from monocytes towards immature DCs remains elusive. Here we demonstrate that complement 3 (C3) has a regulatory impact on the expression of specific DC surface molecules and DC-derived cytokine production during DC differentiation. We isolated human adherent peripheral blood mononuclear cells, which were cultured in the presence of GM-CSF plus IL-4 in medium supplemented with normal human serum or C3 deficient serum. The lack of C3 during DC differentiation negatively impacted the expression of C-type lectin receptor DC-SIGN, the antigen presenting molecules HLA-DR and CD1a, and the costimulatory molecules CD80 and CD86. Further, the spontaneous production of IL-6 and IL-12 was reduced in the absence of C3. Moreover, the maturation of immature DCs in response to LPS challenge was impaired in the absence of C3 as evidenced by reduced MHC-II, co-stimulatory molecule expression as well as modulated IL-12 and TNF-alpha production. Collectively, our results provide evidence for a novel role of C3 as a critical cofactor in human DC differentiation and maturation. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Mycoplasma arthritidis causes autoimmune arthritis in rodents. It produces a superantigen (MAM) that simultaneously activates antigen presenting cells and T cells inducing nitric oxide and cytokine release. Nitric oxide is a key inducer and regulator of the immune system activation. Here, we investigated nitric oxide and cytokine production and interactions of these molecules in MAM-stimulated co-cultures of macrophages (J774A.1 cell line) with spleen lymphocytes. We found that: a) MAM-induced nitric oxide, interferon-gamma, membrane-associated tumor necrosis factor and interleukin-2 production in co-cultures of macrophages with lymphocytes from BALB/c and C3H/HePas but not from C57B1/6 mice; b) production of nitric oxide was dependent on interferon-gamma whereas that of interferon-gamma was dependent on interleukin-2 and membrane-associated tumor necrosis factor; c) these cytokines up regulated MAM-induced nitric oxide production. Unraveling the mechanisms of cell activation induced by MAM might be helpful to design strategies to prevent immune system activation by superantigens and therefore in seeking amelioration of associated immunopathologies. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Progressive renal failure continues to be a challenge. The use of bone marrow cells represents a means of meeting that challenge. We used lineage-negative (Lin(-)) cells to test the hypothesis that Lin(-) cell treatment decreases renal injury. Syngeneic Fischer 344 rats were divided into four groups: sham ( laparotomy only, untreated); Nx (five-sixth nephrectomy and untreated); NxLC1 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy day 15); and NxLC3 (five-sixth nephrectomy and receiving 2 x 10(6) Lin(-) cells on postnephrectomy days 15, 30, and 45). On postoperative day 16, renal mRNA expression of interleukin (IL)-1 beta, tumor necrosis factor-alpha, and IL-6 was lower in NxLC rats than in Nx rats. On postnephrectomy day 60, NxLC rats presented less proteinuria, glomerulosclerosis, anemia, renal infiltration of immune cells, and protein expression of monocyte chemoattractant protein-1, as well as decreased interstitial area. Immunostaining for proliferating cell nuclear antigen showed that, in comparison with sham rats, Nx rats presented greater cell proliferation, whereas NxLC1 rats and NxLC3 rats presented less cell proliferation than did Nx rats. Protein expression of the cyclin-dependent kinase inhibitor p21 and of vascular endothelial growth factor increased after nephrectomy and decreased after Lin(-) cell treatment. On postnephrectomy day 120, renal function (inulin clearance) was significantly better in Lin(-) cell-treated rats than in untreated rats. Lin(-) cell treatment significantly improved survival. These data suggest that Lin(-) cell treatment protects against chronic renal failure. STEM CELLS 2009; 27: 682-692
Resumo:
Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.
Resumo:
Allergy to components of the diet is followed by gut inflammation which in children, sometimes progress to mucosal lesions and anaphylaxis. In newborns suffering of cow`s milk allergy, bloody stools, rectal. bleeding and ulcerations are found. The rat systemic anaphylaxis is a suitable model to study the intestinal lesions associated to allergy. In the present study we used this model to investigate some mechanisms involved. We found that 15 min after antigen challenge of sensitized rats, hemorrhagic lesions develop in the small intestine. The lesions were more severe in jejunum and ileum compared to duodenum. Pretreatment of the rats with a platelet-activating factor-receptor antagonist (WEB-2170) reduced the lesions whereas inhibition of endogenous nitric oxide by L-NAME, greatly increased the hemorrhagic lesions and mortality. Both, lesions and mortality were reversed by L-arginine. The hemorrhagic lesions were also significantly reduced by the mast cell stabilizers, disodium cromoglycate and ketotifen as well as by neutrophils depletion (with anti-PMN antibodies) or inhibition of selectin binding (by treatment with fucoidan). Thus, the intestinal hemorrhagic lesions in this model are dependent on ptatelet-activating factor, mast cell granule-derived mediators and neutrophils. Endogenous nitric oxide and supplementation with L-arginine has a protective role, reducing the lesions and preventing mortality. These results contributed to elucidate mechanisms involved in intestinal lesions which could be of relevance to human small bowel injury associated to allergy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.
Resumo:
Malignant melanoma has increased incidence worldwide and causes most skin cancer-related deaths. A few cell surface antigens that can be targets of antitumor immunotherapy have been characterized in melanoma. This is an expanding field because of the ineffectiveness of conventional cancer therapy for the metastatic form of melanoma. In the present work, antimelanoma monoclonal antibodies (mAbs) were raised against B16F10 cells (subclone Nex4, grown in murine serum), with novel specificities and antitumor effects in vitro and in vivo. MAb A4 (IgG2ak) recognizes a surface antigen on B16F10-Nex2 cells identified as protocadherin beta(13). It is cytotoxic in vitro and in vivo to B16F10-Nex2 cells as well as in vitro to human melanoma cell lines. MAb A4M (IgM) strongly reacted with nuclei of permeabilized murine tumor cells, recognizing histone 1. Although it is not cytotoxic in vitro, similarly with mAb A4, mAb A4M significantly reduced the number of lung nodules in mice challenged intravenously with B16F10-Nex2 cells. The V(H) CDR3 peptide from mAb A4 and V(L) CDR1 and CDR2 from mAb A4M showed significant cytotoxic activities in vitro, leading tumor cells to apoptosis. A cyclic peptide representing A4 CDR H3 competed with mAb A4 for binding to melanoma cells. MAb A4M CDRs L1 and L2 in addition to the antitumor effect also inhibited angiogenesis of human umbilical vein endothelial cells in vitro. As shown in the present work, mAbs A4 and A4M and selected CDR peptides are strong candidates to be developed as drugs for antitumor therapy for invasive melanoma.
Resumo:
Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.
Resumo:
Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), a systemic mycosis presenting clinical manifestations ranging from mild to severe forms. A P. brasiliensis cDNA expression library was produced and screened with pooled sera from PCM patients adsorbed against antigens derived from in vitro-grown P. brasiliensis yeast cells. Sequencing DNA inserts from clones reactive with PCM patients sera indicated 35 open reading frames presenting homology to genes involved in metabolic pathways, transport, among other predicted functions. The complete cDNAs encoding aromatic-L-amino-acid decarboxylase (Pbddc), lumazine synthase (Pbls) and a homologue of the high affinity copper transporter (Pbctr3) were obtained. Recombinant proteins PbDDC and PbLS were obtained; a peptide was synthesized for PbCTR3. The proteins and the synthetic peptide were recognized by sera of patients with confirmed PCM and not by sera of healthy patients. Using the in vivo-induced antigen technology (IVIAT), we identified immunogenic proteins expressed at high levels during infection. Quantitative real time RTPCR demonstrated high transcript levels of Pbddc, Pbls and Pbctr3 in yeast cells infecting macrophages. Transcripts in yeast cells derived from spleen and liver of infected mice were also measured by qRT-PCR. Our results suggest a putative role for the immunogenic proteins in the infectious process of P. brasiliensis. (C) 2009 Elsevier Masson SAS. All rights reserved.