15 resultados para anionic collagen
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present study porcine skin and bovine pericardium were used as a source of type I collagen. Both were submitted to an alkaline treatment and mineralized by the alternate soaking method. Thermal stability and extent of mineralization have been investigated using DSC and TG. After alkaline hydrolysis there is a decrease in thermal stability but mineralization stabilizes collagen structure. Thermogravimetric data have shown that the amount of hydroxyapatite present in bovine pericardium matrix (45%) was greater than on porcine skin matrix (20%). Presence of hydroxyapatite was confirmed by EDX.
Resumo:
Polyanionic collagen obtained from bovine pericardial tissue submitted to alkaline hydrolysis is an acellular matrix with strong potential in tissue engineering. However, increasing the carboxyl content reduces fibril formation and thermal stability compared to the native tissues. In the present work, we propose a chemical protocol based on the association of alkaline hydrolysis with 1,4-dioxane treatment to either attenuate or revert the drastic structural modifications promoted by alkaline treatments. For the characterization of the polyanionic membranes treated with 1,4-dioxane, we found that (1) scanning electron microscopy (SEM) shows a stronger reorientation and aggregation of collagen microfibrils; (2) histological evaluation reveals recovering of the alignment of collagen fibers and reassociation with elastic fibers; (3) differential scanning calorimetry (DSC) shows an increase in thermal stability; and (4) in biocompatibility assays there is a normal attachment, morphology and proliferation associated with high survival of the mouse fibroblast cell line NIH3T3 in reconstituted membranes, which behave as native membranes. Our conclusions reinforce the ability of 1,4-dioxane to enhance the properties of negatively charged polyanionic collagen associated with its potential use as biomaterials for grafting, cationic drug- or cell-delivery systems and for the coating of cardiovascular devices.
Resumo:
In recent years, there has been a great interest in the development of biomaterials that could be used in the repair of bone defects. Collagen matrix (CM) has the advantage that it can be modified chemically to improve its mechanical properties. The aim of the present study was to evaluate the effect of three-dimensional membranes of native or anionic (submitted to alkaline treatment for 48 or 96 h) collagen matrix on the consolidation of osteoporosis bone fractures resulting from the gonadal hormone alterations caused by ovariectomy in rats subjected to hormone replacement therapy. The animals received the implants 4 months after ovariectomy and were sacrificed 8 weeks after implantation of the membranes into 4-mm wide bone defects created in the distal third of the femur with a surgical bur. Macroscopic analysis revealed the absence of pathological alterations in the implanted areas, suggesting that the material was biocompatible. Microscopic analysis showed a lower amount of bone ingrowth in the areas receiving the native membrane compared to the bone defects filled with the anionic membranes. In ovariectomized animals receiving anionic membranes, a delay in bone regeneration was observed mainly in animals not subjected to hormone replacement therapy. We conclude that anionic membranes treated with alkaline solution for 48 and 96 h presented better results in terms of bone ingrowth.
Resumo:
Aim To evaluate the influence of resorbable membranes on hard tissue alterations and osseointegration at implants placed into extraction sockets in a dog model. Material and methods In the mandibular premolar region, implants were installed immediately into the extraction sockets of six Labrador dogs. Collagen-resorbable membranes were placed at the test sites, while the control sites were left uncovered. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation. Results After 4 months of healing, a control implant was not integrated (n=5). Both at the test and at the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between the test and the control sites, the alveolar bone crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 1.7 mm) compared with the control sites (loss: 2.2 mm). Conclusions The use of collagen-resorbable membranes at implants immediately placed into extraction sockets contributed to a partial (23%) preservation of the buccal outline of the alveolar process. To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Carvalho Cardoso L, Lang NP. Collagen membranes at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 891-897.doi: 10.1111/j.1600-0501.2010.01946.x.
Resumo:
The objective of this study was to investigate the catalytic activity of basic aminopeptidase (APB) and its association with periarticular edema and circulating tumor necrosis factor (TNF)-alpha and type II collagen (CII) antibodies (AACII) in a rat model of rheumatoid arthritis (RA) induced by CII (CIA). Edema does not occur in part of CH-treated, even when AACII is higher than in control. TNF-alpha is detectable only in edematous CII-treated. APB in synovial membrane is predominantly a membrane-bound activity also present in soluble form and with higher activity in edematous than in non-edematous CH-treated or control. Synovial fluid and blood plasma have lower APB in non-edematous than in edematous CII-treated or control. In peripheral blood mononuclear cells (PBMCs) the highest levels of APB are found in soluble form in control and in membrane-bound form in non-edematous CII-treated. CII treatment distinguishes two categories of rats: one with arthritic edema, high AACII, detectable TNF-alpha, high soluble and membrane-bound APB in synovial membrane and low APB in the soluble fraction of PBMCs, and another without edema and with high AACII, undetectable TNF-alpha, low APB in the synovial fluid and blood plasma and high APB in the membrane-bound fraction of PBMCs. Data suggest that APB and CIA are strongly related. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the pregnant mouse endometrium, collagen fibrillogenesis is characterized by the presence of very thick collagen fibrils which are topographically located exclusively within the decidualized stroma. This dynamic biological process is in part regulated by the small leucine-rich proteoglycans decorin and biglycan. In the present study we utilized wild-type (Dcn+/+) and decorin-deficient (Dcn-/-) time-pregnant mice to investigate the evolution of non-decidualized and decidualized collagen matrix in the uterine wall of these animals. Ultrastructural and morphometric analyses revealed that the organization of collagen fibrils in the pregnant endometrium of both non-decidualized and decidualized stroma showed a great variability of shape and size, regardless of the genotype. However, the decidualized endometrium from Dcn-/- mice contained fibrils with larger diameter and more irregular contours as compared to the wild-type littermates. In the Dcn-/- animals, the proportion of thin (10-50 nm) fibrils was also higher as compared to Dcn+/+ animals. On day 7 of pregnancy, biglycan was similarly localized in the decidualized endometrium in both genotypes. Lumican immunostaining was intense both in decidualized and non-decidualized stroma from Dcn-/- animals. The present results support previous findings suggesting that decorin participates in uterine collagen fibrillogenesis. In addition, we suggest that the absence of decorin disturbs the process of lateral assembly of thin fibrils, resulting in very thick collagen fibrils with irregular profiles. Our data further suggest that decorin, biglycan and lumican might play an interactive role in collagen fibrillogenesis in the mouse endometrium, a process modulated according to the stage of pregnancy.
Resumo:
Aqueous dispersions of the anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) at pH above the apparent pK of DMPG and concentrations in the interval 70-300 mM have been investigated by small (SAXS) and wide-angle X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. The order. disorder transition of the hydrocarbon chains occurs along an interval of about 10 degrees C (between T(m)(on) similar to 20 degrees C and T(m)(off) similar to 30 degrees C). Such melting regime was previously characterized at lower concentrations, up to 70 mM DMPG, when sample transparency was correlated with the presence of pores across the bilayer. At higher concentrations considered here, the melting regime persists but is not transparent. Defined SAXS peaks appear and a new lamellar phase L(p) with pores is proposed to exist above 70 mM DMPG, starting at similar to 23 degrees C (similar to 3 degrees C above T(m)(on)) and losing correlation after T(m)(off). A new model for describing the X-ray scattering of bilayers with pores, presented here, is able to explain the broad band attributed to in-plane correlation between pores. The majority of cell membranes have a net negative charge, and the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance.
Resumo:
At low ionic strength dimyristoylphosphatidylglycerol (DMPG) exhibits a broad phase transition region characterized by several superimposed calorimetric peaks. Peculiar properties, such as sample transparency, are observed only in the transition region. In this work we use differential scanning calorimetry (DSC), turbidity. and optical microscopy to study the narrowing of the transition region with the increase of ionic strength (0-500 mM NaCl). Upon addition of salt, the temperature extension of the transition region is reduced, and the number of calorimetric peaks decreases until a single cooperative event at T(m) = 23 degrees C is observed in the presence of 500 mM NaCl. The transition region is always coupled with a decrease in turbidity, but a transparent region is detected within the melting process only in the presence of up to 20 mM NaCl. The vanishing of the transparent region is associated with one of the calorimetric peaks. Optical microscopy of giant vesicles shows that bilayers first rupture when the transition region is reached and Subsequently lose optical contrast. Fluorescence microscopy reveals a blurry and undefined image in the transparent region, suggesting a different lipid self-assembly. Overall sample turbidity can be directly related to the bilayer optical contrast. Our observations are discussed in terms of the bilayer being perforated along the transition region. In the narrower temperature interval of the transparent region, dependent on the ionic strength, the perforation is extensive and the bilayer completely loses the optical contrast.
Resumo:
Background and Objectives: Several studies have suggested that low-level laser therapy (LLLT) can ameliorate oral mucositis, however, the mechanisms involved are not well understood. The aim of this study was to investigate the mechanisms of action of LLLT on chemotherapy-induced oral mucositis, as related to effects on collagen expression and inflammation Materials and Methods: A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil, followed by surface irritation. Animals were randomly allocated into three groups, and treated with an InGaAIP diode laser at a wavelength of 660 nm and output power of 35 or 100 mW laser, or no laser Clinical severity of mucositis was assessed at four time-points by a blinded examiner Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. Collagen was qualitatively and quantitatively evaluated after picrosinus staining. The density of the neutrophil infiltrate was also scored Results: Peak clinical severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW and control groups The reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a decrease in the number of neutrophils and an increase in the proportion of mature collagen as compared to the other two groups. The total quantity of collagen was significantly higher in the control (no laser) group at the day 11 time-point, as compared to the 35 mW laser group, consistent with a more prolonged inflammatory response in the control group. Conclusion: This study supports two mechanisms of action for LLLT in reducing mucositis severity. The increase in collagen organization in response to the 35 mW laser indicates that LLLT promotes wound healing In addition, LLLT also appears to have an anti-inflammatory effect, as evidenced by the reduction in neutrophil infiltrate Lasers Surg Med 42 546-552, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
In this paper, we present a study about the influence of the porphyrin metal center and mesa ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca(2+). Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This article describes a solid-state NMR (SSNMR) investigation of the influence of hydration and chemical cross-linking on the molecular dynamics of the constituents of the bovine pericardium (BP) tissues and its relation to the mechanical properties of the tissue. Samples of natural phenetylamine-diepoxide (DE)- and glutaraldehyde (GL)-fixed BP were investigated by (13)C cross-polarization SSNMR to probe the dynamics of the collagen, and the results were correlated to the mechanical properties of the tissues, probed by dynamical mechanical analysis. For samples of natural BP, the NMR results show that the higher the hydration level the more pronounced the molecular dynamics of the collagen backbone and sidechains, decreasing the tissue`s elastic modulus. In contrast, in DE- and GL-treated samples, the collagen molecules are more rigid, and the hydration seems to be less effective in increasing the collagen molecular dynamics and reducing the mechanical strength of the samples. This is mostly attributed to the presence of cross-links between the collagen plates, which renders the collagen mobility less dependent on the water absorption in chemically treated samples. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The adsorption behavior of several amphiphilic polyelectrolytes of poly(maleic anhydride-alt-styrene) functionalized with naphthyl and phenyl groups, onto amino-terminated silicon wafer has been studied by means of null- ellipsometry, atomic force microscopy (AFM) and contact angle measurements. The maximum of adsorption, Gamma(plateau), varies with the ionic strength, the polyelectrolyte structure and the chain length. Values of Gamma(plateau) obtained at low and high ionic strengths indicate that the adsorption follows the ""screening-reduced adsorption"" regime. Large aggregates were detected in solution by means of dynamic light scattering and fluorescence measurements. However. AFM indicated the formation of smooth layers and the absence of aggregates. A model based on a two-step adsorption behavior was proposed. In the first one, isolated chains in equilibrium with the aggregates in solution adsorbed onto amino-terminated surface. The adsorption is driven by electrostatic interaction between protonated surface and carboxylate groups. This first layer exposes naphtyl or phenyl groups to the solution. The second layer adsorption is now driven by hydrophobic interaction between surface and chains and exposes carboxylate groups to the medium, which repel the forthcoming chain by electrostatic repulsion. Upon drying some hydrophobic naphtyl or phenyl groups might be oriented to the air, as revealed by contact angle measurements. Such amphiphilic polyelectrolyte layers worked well for the building-up of multilayers with chitosan. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Three water-insoluble, micelle-anchored flavylium salts, 7-hydroxy-3-octyl-flavylium chloride, 4`-hexyl-7-hydroxyflavylium chloride, and 6-hexyl-7-hydroxy-4-methyl-flavylium chloride, have been employed to probe excited-state prototropic reactions in micellar sodium dodecyl sulfate (SDS). In SDS micelles, the fluorescence decays of these three flavylium salts are tetraexponential functions in the pH range from 1.0 to 4.6 at temperatures from 293 to 318 K. The four components of the decays are assigned to Four kinetically coupled excited species in the micelle: specifically, promptly deprotonable (AH(+)*) and nonpromptly deprotonable (AH(h)(+)*) orientations of the acid in the micelle. the base-proton geminate pair (A*center dot center dot center dot H(+)), and the free conjugate base (A*). The initial prompt deprotonation to form the germinate pair occurs at essentially the same rate (k(d) similar to 6-7 x 10(10) s(-1)) for all three photoacids. Recombination of the germinate pair is similar to 3-fold faster than the rate of proton escape from the pair (k(rec) similar to 3 x 10(10) s(-1) and k(diss) similar to 1 x 10(10) s(-1)), corresponding to an intrinsic recombination efficiency of the pair of similar to 75%. Finally, the reprotonation of the short-lived free A* (200-350 ps, depending oil the photoacid) has two components, only one of which depends oil the proton concentration in the intermicellar aqueous phase. Ultrafast transfer of the proton to water and substantial compartmentalization of the photogenerated proton at the micelle surface Oil the picosecond time scale strongly suggest preferential transfer of the proton to preformed hydrogen-bonded water bridges between the photoacid and the anionic headgroups. This localizes the proton in the vicinity of the excited base much more efficiently than ill bulk water, resulting ill the predominance of geminate re reprotonation at the micelle surface.
Resumo:
The heteroaggregation behavior between a new class of nonplanar cationic beta-octabrominated meso-alkylpyridinium zinc(II)-porphyrins (beta-Br(8)(ZnP)) and anionic tetrasulfonated metallophthalocyanines (MTSPc, M = Ni(II) and Cu(II)) has been studied by UV-Vis electronic spectroscopy, in dimethylsulfoxide (DMSO) solution. The heteroaggregate stoichiometry and the association constants were determined by means of Job plots. Dimers and unexpected trimers, taking into account the existence of axially coordinated DMSO molecules to the central metal in both beta-Br(8)(ZnP) and MTSPc complexes, are formed in solution. The spectroscopic properties of the heteroaggregates are markedly different from those observed in the correspondent planar cationic derivatives, the heteroaggregates showing major changes predominantly in the beta-Br(8)(ZnP) Soret band region and minor effects in the MTSPc Q bands. The observed changes in the Soret band region (red/blue shifts, decrease in the absorption intensities) depend on the nature of the alkyl substituent attached to the meso-pyridinium group. The greater versatility of the nonplanar porphyrins accommodating the meso-substituents in out-of-plane and in-plane conformations is proposed to explain the observed stoichiometries and the differences on the heteroaggregates spectroscopic properties for each beta-Br(8)(ZnP) compound. The likely conformations assumed by the meso-substituents in these beta-Br(8)(ZnP) compounds and its spectroscopic characteristics are in accordance with the participation of the substituents as the main factor on the extent of the observed red-shifted spectra in nonplanar porphyrins. The obtained association constants (K(IP)) for the dimers and trimers are lower than those previously found for the similar planar cationic porphyrin systems, due to the lack of extensive pi-pi interactions and to the less effective approximation between the ionic groups, resulting in loosened heteroaggregates, particularly for the trimeric systems. Furthermore, the experimental results suggest that the NiTSPc is more distorted in DMSO solution than the CuTSPc derivative, favoring the interaction with the nonplanar beta-Br(8)(ZnP) compounds. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Despite the many existing crosslinking procedures, glutaraldehyde (GA) is still the method of choice used in the manufacture of bioprosthesis. The major problems with GA are: (a) uncontrolled reactivity due to the chemical complexity or GA solutions; (b) toxicity due to the release of GA from polymeric crosslinks; and (c) tissue impermeabilization due to polymeric and heterogeneous crosslinks formation, partially responsible for the undesirable calcification of the bioprosthesis. A new method of crosslinking glutaraldehyde acetals has been developed with GA in acid ethanolic solution, and after the distribution inside de matrix, GA is released to crosslinking. Concentrations of hydrochloride acid in ethanolic solutions between 0.1 and 0.001 mol/L with GA concentration between 0.1 and 1.0% were measured in an ultraviolet spectrophotometer to verify the presence of free aldehyde groups and polymeric compounds of GA. After these measurements, the solutions were used to crosslink bovine pericardium. The spectrophotometric results showed that GA was better protected in acetal forms for acid ethanolic solution with HCl at 0.003 mol/L and GA 1.0%(v/v). The shrinkage temperature results of bovine pericardium crosslinked with acetal solutions showed values near 85 C after the exposure to triethylamine vapors.