19 resultados para adaptive immune response
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The mechanisms that govern the initial interaction between Paracoccidioides brasiliensis, a primary dimorphic fungal pathogen, and cells of the innate immunity need to be clarified. Our previous studies showed that Toll-like receptor 2 (TLR2) and TLR4 regulate the initial interaction of fungal cells with macrophages and the pattern of adaptive immunity that further develops. The aim of the present investigation was to assess the role of MyD88, an adaptor molecule used by TLRs to activate genes of the inflammatory response in pulmonary paracoccidioidomycosis. Studies were performed with normal and MyD88(-/-) C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells. MyD88(-/-) macrophages displayed impaired interaction with fungal yeast cells and produced low levels of IL-12, MCP-1, and nitric oxide, thus allowing increased fungal growth. Compared with wild-type (WT) mice, MyD88(-/-) mice developed a more severe infection of the lungs and had marked dissemination of fungal cells to the liver and spleen. MyD88(-/-) mice presented low levels of Th1, Th2, and Th17 cytokines, suppressed lymphoproliferation, and impaired influx of inflammatory cells to the lungs, and this group of cells comprised lower numbers of neutrophils, activated macrophages, and T cells. Nonorganized, coalescent granulomas, which contained high numbers of fungal cells, characterized the severe lesions of MyD88(-/-) mice; the lesions replaced extensive areas of several organs. Therefore, MyD88(-/-) mice were unable to control fungal growth and showed a significantly decreased survival time. In conclusion, our findings demonstrate that MyD88 signaling is important in the activation of fungicidal mechanisms and the induction of protective innate and adaptive immune responses against P. brasiliensis.
Resumo:
Pteridium aquilinum (bracken fern) is one of the most common plants. Epidemiological studies have revealed a higher risk of certain types of cancers (i.e., esophageal, gastric) in people who consume bracken fern directly ( as crosiers or rhizomes) or indirectly through the consumption of milk from livestock that fed on the plant. In animals, evidence exists regarding the associations between chronic bracken fern intoxication, papilloma virus infection, and the development of carcinomas. While it is possible that some carcinogens in bracken fern could be responsible for these cancers in both humans and animals, it is equally plausible that the observed increases in cancers could be related to induction of an overall immunosuppression by the plant/its various constituents. Under the latter scenario, normal tumor surveillance responses against nascent (non-bracken-induced) cancers or responses against viral infections ( specifically those linked to induction of cancers) might be adversely impacted by continuous dietary exposure to this plant. Therefore, the overall objective of this study was to evaluate the immunomodulatory effects of bracken fern following daily ingestion of its extract by a murine host over a period of 14 ( or up to 30) days. In C57BL/6 mice administered ( by gavage) the extract, histological analyses revealed a significant reduction in splenic white pulp area. Among a variety of immune response parameters/functions assessed in these hosts and isolated cells, both delayed-type hypersensitivity (DTH) analysis and evaluation of IFN gamma. production by NK cells during T(H)1 priming were also reduced. Lastly, the innate response in these hosts-assessed by analysis of NK cell cytotoxic functionality-was also diminished. The results here clearly showed the immunosuppressive effects of P. aquilinum and that many of the functions that were modulated could contribute to the increased risk of cancer formation in exposed hosts.
Resumo:
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-alpha and ribavirin therapy. Major histocompatibility complex class I restricted CD8+ T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated alpha-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy.
Resumo:
Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.
Resumo:
Echinometra lucunter, (Pinda) is a sea urchin encountered in the Brazilian coast and exposed to high and low temperatures related to low and high tides. Despite their great distribution and importance, few studies have been done on the biological function of their coelomocytes. Thus, Echinometra lucunter perivisceral coelomocytes were characterized under optical and transmission electron microscopy. Phagocytic amoebocytes in the perivisceral coelom were labelled by injecting ferritin, and ferritin labelled phagocytic amoebocytes were found in the peristomial connective tissue after injecting India ink into the tissue, indicating the amoebocytes ability to respond to an inflammatory stimulus. Results showed that the phagocytic amoebocytes were the main inflammatory cells found in the innate immune response of E lucunter. While other works have recorded these phenomena in sea urchins found in moderate and constant temperature, this study reports on these same phenomena in a tropical sea urchin under great variation of temperature, thus providing new data to inflammatory studies in invertebrate pathology. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Aims Periodontal disease (PD) and airway allergic inflammation (AL) present opposing inflammatory immunological features and clinically present an inverse correlation. However, the putative mechanisms underlying such opposite association are unknown. Material and Methods Balb/C mice were submitted to the co-induction of experimental PD (induced by Actinobacillus actinomycetemcomitans oral inoculation) and AL [induced by sensitization with ovalbumin (OVA) and the subsequent OVA challenges], and evaluated regarding PD and AL severity, immune response [cytokine production at periodontal tissues, and T-helper transcription factors in submandibular lymph nodes (LNs)] and infection parameters. Results PD/AL co-induction decreased PD alveolar bone loss and periodontal inflammation while experimental AL parameters were unaltered. An active functional interference was verified, because independent OVA sensitization and challenge not modulate PD outcome. PD+AL group presented decreased tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1 beta, -gamma, IL-17A, receptor activator of nuclear factor kappa-light-chain-enhancer of activated B cells ligand and matrix metalloproteinase (MMP)-13 levels in periodontal tissues, while IL-4 and IL-10 levels were unaltered by AL co-induction. AL co-induction also resulted in upregulated T-bet and related orphan receptor gamma and downregulated GATA3 levels expression in submandibular LNs when compared with PD group. Conclusion Our results demonstrate that the interaction between experimental periodontitis and allergy involves functional immunological interferences, which restrains experimental periodontitis development by means of a skewed immune response.
Resumo:
Background and Objective: Cytolethal distending toxin (CDT) is a genotoxin produced by Aggregatibacter actinomycetemcomitans. In spite of its association with pathogenesis, little is known about the humoral immune response against the CDT. This study aimed to test whether subgingival colonization and humoral response to A. actinomycetemcomitans would lead to a response against CDT. Material and Methods: Sera from periodontally healthy, localized and generalized aggressive periodontitis and chronic periodontitis subjects (n = 80) were assessed for immunoglobulin G titers to A. actinomycetemcomitans serotypes a/b/c and to each CDT subunit (CdtA, CdtB and CdtC) by ELISA. A. actinomycetemcomitans subgingival levels and neutralization of CDT activity were also analyzed. Results: Sera from 75.0% localized and 81.8% generalized aggressive periodontitis patients reacted to A. actinomycetemcomitans. A response to serotype b was detected in localized (66.7%) and generalized aggressive periodontitis (54.5%). Reactivity to A. actinomycetemcomitans correlated with subgingival colonization (R = 0.75, p < 0.05). There was no correlation between A. actinomycetemcomitans colonization or response to serotypes and the immunoglobulin G response to CDT subunits. Titers of immunoglobulin G to CdtA and CdtB did not differ among groups; however, sera of all generalized aggressive periodontitis patients reacted to CdtC. Neutralization of CDT was not correlated with levels of antibodies to CDT subunits. Conclusion: Response to CdtA and CdtB did not correlate with the periodontal status of the subject in the context of an A. actinomycetemcomitans infection. However, a response to CdtC was found in sera of generalized but not of localized aggressive periodontitis subjects. Differences in response to CdtC between generalized and localized aggressive periodontitis subjects indicate that CDT could be expressed differently by the infecting strains. Alternatively, the antibody response to CdtC could require the colonization of multiple sites.
Resumo:
Leptin is involved in the control of energy storage by the body. Low serum leptin levels, as seen in starvation, are associated with impaired inflammatory T cell responses that can be reversed by exogenous leptin. Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and recurrent infections. Several defects in T cell function have also been described, and allergy, autoimmune disease, and lymphomas or other malignancies can be present. Previous studies in Brazilian CVID patients have shown that, in contrast with mononuclear cells from healthy controls, CVID cells cultured with phytohemagglutinin and added leptin increased the proliferative response and decreased activation-induced apoptosis. Interleukin (IL)-2 and especially IL-4 production also increased significantly, although the effects of exposure to leptin were not observed uniformly in CVID patients. The majority, however, responded in some degree, and some exhibited completely restored values of the four parameters. These remarkable results indicate leptin could be used to improve immune function in these patients. On the other hand, we found no specific correlation between serum leptin levels and the number of infectious events over a 24-month period, presence of autoimmunity, allergies, or cancer in these patients. The results suggest that the absolute value of serum leptin does not determine the clinical behavior of patients or responses to leptin in vitro. Of note is the divergence between serum leptin, response to leptin in vitro, and the presence of autoimmunity, indicating the need to identify the cellular and molecular players involved in the regulation of the immune response by leptin in CVID.
Resumo:
Streptococcus pyogenes causes severe invasive infections: the post-streptococcal sequelae of acute rheumatic fever (RF) and rheumatic heart disease (RHD), acute glomerulonephritis, and uncomplicated pharyngitis and pyoderma. Efforts to produce a vaccine against S. pyogenes began several decades ago, and different models have been proposed. Here, we describe the methodology used in the development of a new vaccine model, consisting of both T and B protective epitopes constructed as synthetic peptides and recombinant proteins. Two adjuvants were tested in an experimental inbred mouse model: a classical Freund`s adjuvant and a new adjuvant (AFCo1) that induces mucosal immune responses and is obtained by calcium precipitation of a proteoliposome derived from the outer membrane of Neisseria meningitides B. The StreptInCor vaccine epitope co-administrated with AFCo1 adjuvant induced mucosal (IgA) and systemic (IgG) antibodies as preferential Th1-mediated immune responses. No autoimmune reactions were observed, suggesting that the vaccine epitope is safe. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Objective: We investigated the effect of intrauterine undernourishment on some features of asthma using a model of allergic lung inflammation in rats. The effects of age at which the rats were challenged (5 and 9 wk) were also evaluated. Methods: Intrauterine undernourished offspring were obtained from dams that were fed 50% of the nourished diet of counterparts and were immunized at 5 and 9 wk of age. They were tested for immunoglobulin E anti-ova titers (by passive cutaneous anaphylaxis), cell count in the bronchoal-veolar fluid, leukotriene concentration, airway reactivity, mucus production, and blood corticosterone and leptin concentrations 21 d, after immunologic challenge. Results: Intrauterine undernourishment significantly reduced the antigen-specific immunoglobulin E production, inflammatory cell infiltration into airways, mucus secretion, and production of leukotrienes B-4/C-4 in the lungs in both age groups compared with respective nourished rats. The increased reactivity to methacholine that follows antigen challenge was not affected by intrauterine undernourishment. Corticosterone levels increased with age in the undernourished rats` offspring, but not in the nourished rats` offspring. Undernourished offspring already presented high levels of corticosterone before inflammatory stimulus and were not modified by antigen challenge. Leptin levels increased with challenge in the nourished rats but not in the undernourished rats and could not be related to corticosterone levels in the. undernourished rats. Conclusion: Intrauterine undernourishment has a striking and age-dependent effect on the off spring, reducing lung allergic inflammation. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
T-cell immunity has been claimed as the main immunoprotective mechanism against Paracoccidioides brasiliensis infection, the most important fungal infection in Latin America. As the initial events that control T-cell activation in paracoccidioidomycosis (PCM) are not well established, we decided to investigate the role of CD28, an important costimulatory molecule for the activation of effector and regulatory T cells, in the immunity against this pulmonary pathogen. Using CD28-deficient (CD28(-/-)) and normal wild-type (WT) C57BL/6 mice, we were able to demonstrate that CD28 costimulation determines in pulmonary paracoccidioidomycosis an early immunoprotection but a late deleterious effect associated with impaired immunity and uncontrolled fungal growth. Up to week 10 postinfection, CD28(-/-) mice presented increased pulmonary and hepatic fungal loads allied with diminished production of antibodies and pro-and anti-inflammatory cytokines besides impaired activation and migration of effector and regulatory T (Treg) cells to the lungs. Unexpectedly, CD28-sufficient mice progressively lost the control of fungal growth, resulting in an increased mortality associated with persistent presence of Treg cells, deactivation of inflammatory macrophages and T cells, prevalent presence of anti-inflammatory cytokines, elevated fungal burdens, and extensive hepatic lesions. As a whole, our findings suggest that CD28 is required for the early protective T-cell responses to P. brasiliensis infection, but it also induces the expansion of regulatory circuits that lately impair adaptive immunity, allowing uncontrolled fungal growth and overwhelming infection, which leads to precocious mortality of mice.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Bovine Viral Diarrhea Virus (BVDV) is widespread in cattle in Brazil and research shows its large antigenic variability. Available vaccines are produced with virus strains isolated in other countries and may not be effective. In this study, inactivated vaccines containing the Brazilian BVDV-Ib IBSP11 isolate were developed and tested on 6 groups of 10 guinea pigs (Cavia porcellus). Animals in groups A and C received an aqueous vaccine (aluminum hydroxide); B and D groups received an oily vaccine (Montanide ISA50); Group E positive-control animals were given an imported commercial vaccine with BVDV-la Singer; Group F animals were sham vaccinated (negative control). Groups A, B and E received two doses, and Groups C and D, three, every 21 days. Twelve blood samples were taken, at 21-day intervals over 231 days, and evaluated for antibody titer through virus-neutralization (VN), using a homologous strain (IBSP11), and a heterologous strain (BVDV-la NADL). Most animals, 42 days following the first dose, seroconverted to both strains and, after the second dose, there was a significant increase of titers in all groups. The oily formulation induced greater response after the third administration. This increase was not observed with the aqueous vaccines, regardless of the virus used in the VN. Antibody decline was more rapid in animals that received aqueous vaccines. The results showed the importance of studying the influence of endemic strains of commercial vaccines, to improve the efficacy of BVD vaccination. Use of the endemic strain in vaccine formulation presented promising results, as well as the use of guinea pigs as a laboratory model. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.