10 resultados para Zinc(ii)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work 2-formylpyridine-para-chloro-phenyl hydrazone (H2FopCIPh) and 2-formylpyridine-para-nitro-phenyl hydrazone (H2FopNO(2)Ph) were obtained, as well as their copper(II) and zinc(II) complexes [Cu(H2FopClPh)Cl(2)] (1), [Cu(2FopNO(2)Ph)Cl] (2), [Zn(H2FopClPh)Cl(2)] (3) and [Zn(H2FopNO(2)Ph)Cl(2)] (4). Upon re-crystallization in DMSO:acetone conversion of 2 into [Cu(2FopNO(2)Ph)Cl(DMSO)] (2a) and of 4 into [Zn(2FopNO(2)Ph)Cl(DMSO)] (4a) occurred. The crystal structures of 1, 2a, 3 and 4a were determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexes [Zn(2)(HL(1))(2)(CH(3)COO)(2)] (1) and [Zn(2)(L(2))(2)] (2) were synthesized with salicylaldehyde semicarbazone (H(2)L(1)) and salicylaldehyde-4-chlorobenzoyl hydrazone (H(2)LASSBio-1064, H(2)L(2)), respectively. The crystal structure of (1) was determined. Upon recrystallization of previously prepared [Zn(2)(HL(2))(2)(Cl)(2)] (3) in 1:9 DMSO:acetone crystals of [Zn(2)(L(2))(2)(H(2)O)(2)]center dot[Zn(2)(L(2))(2)(DMSO)(4)] (3a) were obtained. The crystal structure of 3a was also determined. All crystal structures revealed the presence of phenoxo-bridged binuclear zinc(II) complexes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Benzoylpyridine-phenylhydrazone (H2BzPh), 2-benzoylpyridine-para-chloro-phenylhydrazone (H2BzpClPh), and 2-benzoylpyridine-para-nitro-phenyl (H2BzpNO(2)Ph) hydrazone were obtained and fully characterized, as well as their zinc(II) complexes [Zn(H2BzPh)Cl(2)] (1), [Zn(H2BzClPh)Cl(2)] (2) and [Zn(H2BzpNO(2)Ph)Cl(2)] (3). During the syntheses of complex 1 a second product crystallized, which was characterized as [Zn(2BzPh)(2)] (1a). Upon re-crystallization in 1: 9 DMSO: acetone conversion of 2 into [Zn(H2BzpClPh)Cl2] center dot H(2)O (2a) and of 3 into [Zn(2BzpNO(2)Ph)Cl(DMSO)] (3a) occurred. The crystal structures of 1a, 2a and 3a were determined. In 1a the two nearly perpendicular H2BzPh ligands give rise to a distorted octahedral environment around the metal. The 5-fold coordination around the metal is completed with two chloride ions in 2a and with one chloride and one oxygen atom from DMSO in 3a. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-Benzoylpyridine-methyl hydrazone (HBzMe) has been obtained as well as its copper(II) [Cu(HBzMe)Cl(2)] (1) and zinc(II) [Zn(HBzMe)Cl(2)] (2) complexes. Upon re-crystallization in 1 - 9 DMSO:acetone conversion of I into dimeric [Cu(BzMe)Cl](2) (1a) occurred. The crystal structures of HBzMe, 1, 1a, and 2 were determined. HBzMe adopts the ZE conformation in the solid. In all complexes the hydrazone adopts the E configuration to attach to the metal through the N(py)-N2-O chelating system. In 1 and 2 a neutral hydrazone coordinates to the metal center while in 1a deprotonation occurs with coordination of an anionic ligand. la presents a dimeric structure. having two copper(II) ions per asymmetric unit. Two chlorides are also present in the copper coordination sphere, which act as bridging ligands and connect the copper centers to each other. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The synthesis, structural characterization, voltammetric experiments and antibacterial activity of [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] were studied and compared with similar previously reported copper complexes. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O crystallized in a monoclinic system, space group C2/c where the nickel ion was in a slightly distorted octahedral environment, coordinated with two sulfisoxazole molecules through the heterocyclic nitrogen and four water molecules. [Ni(sulfapyridine)(2)] crystallized in a orthorhombic crystal system, space group Pnab. The nickel ion was in a distorted octahedral environment, coordinated by two aryl amine N from two sulfonamides acting as monodentate ligands and four N atoms (two sulfonamidic N and two heterocyclic N) from two different sulfonamide molecules acting as bidentate ligands. Differential pulse voltammograms were recorded showing irreversible peaks at 1040 and 1070 mV, respectively, attributed to Ni(II)/Ni(III) process. [Ni(sulfisoxazole)(2)(H2O)(4)] center dot 2H(2)O and [Ni(sulfapyridine)(2)] presented different antibacterial behavior against Staphylococcus aureus and Escherichia coli from the similar copper complexes and they were inactive against Mycobacterium tuberculosis. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A simple, fast, accurate, and sensitive spectrophotometric method was developed to determine zinc(II). This method is based on the reaction of Zn(II) with di-2-pyridyl ketone benzoylhydrazone (DPKBH), at pH=5.5 and 50% (v/v) ethanol. Beers law was obeyed in the range 0.020-1.82 mu g mL(-1) with a molar apsorptivity of 3.64 x 10(4) L mol(-1) cm(-1), and a detection limit (3) of 2.29 mu g L-1. The action of some interfering ions was verified and the developed method applied to pharmaceutical and biological samples. The results were then compared with those obtained by using a flame atomic absorption technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The heteroaggregation behavior between a new class of nonplanar cationic beta-octabrominated meso-alkylpyridinium zinc(II)-porphyrins (beta-Br(8)(ZnP)) and anionic tetrasulfonated metallophthalocyanines (MTSPc, M = Ni(II) and Cu(II)) has been studied by UV-Vis electronic spectroscopy, in dimethylsulfoxide (DMSO) solution. The heteroaggregate stoichiometry and the association constants were determined by means of Job plots. Dimers and unexpected trimers, taking into account the existence of axially coordinated DMSO molecules to the central metal in both beta-Br(8)(ZnP) and MTSPc complexes, are formed in solution. The spectroscopic properties of the heteroaggregates are markedly different from those observed in the correspondent planar cationic derivatives, the heteroaggregates showing major changes predominantly in the beta-Br(8)(ZnP) Soret band region and minor effects in the MTSPc Q bands. The observed changes in the Soret band region (red/blue shifts, decrease in the absorption intensities) depend on the nature of the alkyl substituent attached to the meso-pyridinium group. The greater versatility of the nonplanar porphyrins accommodating the meso-substituents in out-of-plane and in-plane conformations is proposed to explain the observed stoichiometries and the differences on the heteroaggregates spectroscopic properties for each beta-Br(8)(ZnP) compound. The likely conformations assumed by the meso-substituents in these beta-Br(8)(ZnP) compounds and its spectroscopic characteristics are in accordance with the participation of the substituents as the main factor on the extent of the observed red-shifted spectra in nonplanar porphyrins. The obtained association constants (K(IP)) for the dimers and trimers are lower than those previously found for the similar planar cationic porphyrin systems, due to the lack of extensive pi-pi interactions and to the less effective approximation between the ionic groups, resulting in loosened heteroaggregates, particularly for the trimeric systems. Furthermore, the experimental results suggest that the NiTSPc is more distorted in DMSO solution than the CuTSPc derivative, favoring the interaction with the nonplanar beta-Br(8)(ZnP) compounds. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the preparation of new adsorbents derived from sugarcane bagasse and wood sawdust (Manilkara sp.) to remove zinc (II) ions from electroplating wastewater. The first part deals with the chemical modification of sugarcane bagasse and wood sawdust, using succinic anhydride to introduce carboxylic acid functions into the material. The obtained materials (modified sugarcane bagasse MB2 and modified wood sawdust MS2) were then characterized by infrared spectroscopy (IR) and used in adsorption experiments. The adsorption experiments evaluates Zn(2+) removal from aqueous single metal solution and real electroplating wastewater on both batch and continuous experiments using fixed-bed columns prepared in laboratorial scale with the obtained adsorbents. Adsorption isotherms were then developed using Langmuir model and the Thomas kinetic model. The calculated Zn(2+) adsorption capacities were found to be 145 mg/g for MS2 and 125 mg/g for MB2 in single metal aqueous solution, whereas for the industrial wastewater these values were 61 mg/g for MS2 and 55 mg/g for MB2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis, an improved refined crystal and molecular structure re-determination, and the thermal decomposition behavior of two Zn(II) derivatives of isocinchomeronic acid (2,5-pyridinedicarboxylic acid or H(2)2,5-pydc) are presented. [Zn(2,5-pydc)(H(2)O)(3)Zn(2,5-pydc)(H(2)O)(2)](2) (1) crystallizes in the triclinic P-1 space group with a = 7.106(2), b = 11.450(2), c = 11.869(1) angstrom, alpha = 107.29(1), beta = 104.08(1), gamma = 90.32(2)degrees, and Z = 2. [Zn(2,5-pydc)(H(2)O)(2)] center dot H(2)O (2) is orthorhombic (P2(1)2(1)2(1) space group), with a = 7.342(1), b = 9.430(1), c = 13.834(2) angstrom, and Z = 4. The structures were refined to agreement R(1)-factors of 0.0315 (1) and 0.0336 (2). Complex (1) is arranged as molecular Zn(4)(2,5-pydc)(4)(H(2)O)(10) tetramers, the cages of which define channels that remain unblocked by anions. Compound (2) is polymeric with Zn(2,5-pydc)(H(2)O)(2) and Zn(2,5-pydc)(H(2)O)(3) units linked through bridging ligands. Both compounds were synthesized under mild conditions in aqueous media, without need to resort to hydrothermal media. Changing the pH from 4.51 to 5.75 suffices to direct the chemical processes toward the orthorhombic compound rather than to the triclinic one.