7 resultados para ZN-AL ALLOYS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The goal of this study is to evaluate the influence of the urea and glycine fuels on the synthesis of Mn-Zn ferrite by combustion reaction The morphology and magnetic properties of the resulting powders were investigated. The powders were characterized by X-ray diffraction (XRD), nitrogen adsorption (BET), scanning and transmission electron microscopy (SEM and TEM), and magnetic measurement of M x H curves. The X-lay diffraction patterns indicated that the samples containing urea resulted in the formation of crystalline powders and the presence of hematite as a secondary phase The samples containing glycine presented only the formation of crystalline and monophases (Mn,Zn)Fe(2)O(4). The average crystallite size was 18 and 35 nm and saturation magnetization was 3.6 and 75 emu/g, respectively, for the samples containing urea and glycine. The samples synthesized with glycine fuel showed better magnetic properties for application as soft magnetic devices. (C) 2009 Elsevier B.V All rights reserved
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An evaluation was made of the influence of calcination temperatures on the structure, morphology and eletromagnetic properties of Ni-Zn ferrite powders. To this end, Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite powders were prepared by combustion reaction and calcined at temperatures of 800, 1000 and 1200 degrees C/2 h. The resulting powders were characterized by XRD, SEM and reflectivity measurements in the frequency bands of 8-12 GHz. The results demonstrated that raising the calcination temperature increased the particle sizes of the powders of all the systems in question, improving the reflectivity of the materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present theoretical photoluminescence (PL) spectra of undoped and p-doped Al(x)In(1-xy)Ga(y)N/Al(X)In(1) (X) (Y)Ga(Y)N double quantum wells (DQWs). The calculations were performed within the k.p method by means of solving a full eight-band Kane Hamiltonian together with the Poisson equation in a plane wave representation, including exchange-correlation effects within the local density approximation. Strain effects due to the lattice mismatch are also taken into account. We show the calculated PL spectra, analyzing the blue and red-shifts in energy as one varies the spike and the well widths, as well as the acceptor doping concentration. We found a transition between a regime of isolated quantum wells and that of interacting DQWs. Since there are few studies of optical properties of quantum wells based on nitride quaternary alloys, the results reported here will provide guidelines for the interpretation of forthcoming experiments. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.
Resumo:
In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The Mg-Ni metastable alloys (with amorphous or nanocrystalline structures) are promising candidates for anode application in nickel-metal hydride rechargeable batteries due to its large hydrogen absorbing capacity, low weight, availability, and relative low price. In spite of these interesting features, improvement on the cycle life performance must be achieved to allow its application in commercial products. In the present paper, the effect of mechanical coating of a Mg-50 at.% Ni alloy with Ni and Ni-5 at.% Al on the structure, powder morphology, and electrochemical properties is investigated. The coating additives, Mg-Ni alloy and resulting nanocomposites (i.e., Mg-Ni alloy + additive) were investigated by means of X-ray diffraction and scanning electron microscopy. The Mg-Ni alloy and nanocomposites were submitted to galvanostatic cycles of charge and discharge to evaluate their electrode performances. The mechanical coating with Ni and Ni-5% Al increased the maximum discharge capacity of the Mg-Ni alloy from of 221 to 257 and 273 mA h g(-1), respectively. Improvement on the cycle life performance was also achieved by mechanical coating.