103 resultados para Welding process
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Solution annealed and water quenched duplex and super duplex stainless steels are thermodynamically metastable systems at room temperature. These systems do not migrate spontaneously to a thermodynamically stable condition because an energy barrier separates the metastable and stable states. However, any heat input they receive, for example through isothermal treatment or through prolonged exposure to a voltaic arc in the welding process, cause them to reach a condition of stable equilibrium which, for super duplex stainless steels, means precipitation of intermetallic and carbide phases. These phases include the sigma phase, which is easily identified from its morphology, and its influence on the material`s impact strength. The purpose of this work was to ascertain how 2-hour isothermal heat treatments at 920 degrees C and 980 degrees C affect the microstructure of ASTM A890/A890M GR 6A super duplex stainless steel. The sigma phase morphologies were found to be influenced by these two aging temperatures, with the material showing a predominantly lacy microstructure when heat treated at 920 degrees C and block-shaped when heat treated at 980 degrees C. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.
Resumo:
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al2O3) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al2O3 grain size: A - 250 µm; B - 180 µm; C- 110 µm; and D - 50 µm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (α=0.05). The highest bond strength means were recorded in 250 µm group without laser welding. The lowest shear bond strength means were recorded in 50 µm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Shear bond strength decreased in the laser welded specimens.
Resumo:
PURPOSE: To investigate the facial symmetry of rats submitted to experimental mandibular condyle fracture and with protein undernutrition (8% of protein) by means of cephalometric measurements. METHODS: Forty-five adult Wistar rats were distributed in three groups: fracture group, submitted to condylar fracture with no changes in diet; undernourished fracture group, submitted to hypoproteic diet and condylar fracture; undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were induced under general anesthesia. The specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There was significative decrease of the values of serum proteins and albumin in the undernourished fracture group. There was deviation of the median line of the mandible relative to the median line of the maxilla, significative to undernutrition fracture group, as well as asymmetry of the maxilla and mandible, in special in the final period of experiment. CONCLUSION: The mandibular condyle fracture in rats with proteic undernutrition induced an asymmetry of the mandible, also leading to consequences in the maxilla.
Resumo:
This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.
Resumo:
Nitric oxide (NO) has been considered a key molecule in infammation. OBJECTIVE: The aim of this study was to evaluate the effect of treatment with L-NAME and sodium nitroprussiate, substances that inhibit and release NO, respectively, on tissue tolerance to endodontic irrigants. MATERIAL AND METHODS: The vital dye exudation method was used in a rat subcutaneous tissue model. Injections of 2% Evans blue were administered intravenously into the dorsal penial vein of 14 male rats (200-300 g). The NO inhibitor and donor substances were injected into the subcutaneous tissue in the dorsal region, forming two groups of animals: G1 was inoculated with L-NAME and G2 with sodium nitroprussiate. Both groups received injections of the test endodontic irrigants: acetic acid, 15% citric acid, 17% EDTA-T and saline (control). After 30 min, analysis of the extravasated dye was performed by light absorption spectrophotometry (620 nm). RESULTS: There was statistically signifcant difference (p<0.05) between groups 1 and 2 for all irrigants. L-NAME produced a less intense infammatory reaction and nitroprussiate intensifed this process. CONCLUSIONS: Independently of the administration of NO inhibitors and donors, EDTA-T produced the highest irritating potential in vital tissue among the tested irrigating solutions.
Resumo:
We study how the crossover exponent, phi, between the directed percolation (DP) and compact directed percolation (CDP) behaves as a function of the diffusion rate in a model that generalizes the contact process. Our conclusions are based in results pointed by perturbative series expansions and numerical simulations, and are consistent with a value phi = 2 for finite diffusion rates and phi = 1 in the limit of infinite diffusion rate.
Resumo:
A modified method for the calculation of the normalized faradaic charge (q fN) is proposed. The method involves the simulation of an oxidation process, by cyclic voltammetry, by employing potentials in the oxygen evolution reaction region. The method is applicable to organic species whose oxidation is not manifested by a defined oxidation peak at conductive oxide electrodes. The variation of q fN for electrodes of nominal composition Ti/RuX Sn1-X O2 (x = 0.3, 0.2 and 0.1), Ti/Ir0.3Ti0.7O2 and Ti/Ru0.3Ti0.7O2 in the presence of various concentrations of formaldehyde was analyzed. It was observed that electrodes containing SnO2 are the most active for formaldehyde oxidation. Subsequently, in order to test the validity of the proposed model, galvanostatic electrolyses (40 mA cm-2) of two different formaldehyde concentrations (0.10 and 0.01 mol dm-3) were performed. The results are in agreement with the proposed model and indicate that this new method can be used to determine the relative activity of conductive oxide electrodes. In agreement with previous studies, it can be concluded that not only the nature of the electrode material, but also the organic species in solution and its concentration are important factors to be considered in the oxidation of organic compounds.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
Two case studies are presented to describe the process of public school teachers authoring and creating chemistry simulations. They are part of the Virtual Didactic Laboratory for Chemistry, a project developed by the School of the Future of the University of Sao Paulo. the documental analysis of the material produced by two groups of teachers reflects different selection process for both themes and problem-situations when creating simulations. The study demonstrates the potential for chemistry learning with an approach that takes students' everyday lives into account and is based on collaborative work among teachers and researches. Also, from the teachers' perspectives, the possibilities of interaction that a simulation offers for classroom activities are considered.
Resumo:
This paper proposes an architecture for machining process and production monitoring to be applied in machine tools with open Computer numerical control (CNC). A brief description of the advantages of using open CNC for machining process and production monitoring is presented with an emphasis on the CNC architecture using a personal computer (PC)-based human-machine interface. The proposed architecture uses the CNC data and sensors to gather information about the machining process and production. It allows the development of different levels of monitoring systems with mininium investment, minimum need for sensor installation, and low intrusiveness to the process. Successful examples of the utilization of this architecture in a laboratory environment are briefly described. As a Conclusion, it is shown that a wide range of monitoring solutions can be implemented in production processes using the proposed architecture.
Resumo:
Multicomponent white cast iron is a new alloy that belongs to system Fe-C-Cr-W-Mo-V, and because of its excellent wear resistance it is used in the manufacture of hot rolling mills rolls. To date, this alloy has been processed by casting, powder metallurgy, and spray forming. The high-velocity oxyfuel process is now also considered for the manufacture of components with this alloy. The effects of substrate, preheating temperature, and coating thickness on bond strength of coatings have been determined. Substrates of AISI 1020 steel and of cast iron with preheating of 150 A degrees C and at room temperature were used to apply coatings with 200 and 400 mu m nominal thickness. The bond strength of coatings was measured with the pull-off test method and the failure mode by scanning electron microscopic analysis. Coatings with thickness of 200 mu m and applied on substrates of AISI 1020 steel with preheating presented bond strength of 87 +/- A 4 MPa.
Resumo:
Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.
Resumo:
Three welding procedures used to rebuild worn shafts in sugar cane mills were analysed: two submerged arc welding processes and one flux cored arc welding (FCAW) process. Sliding wear tests were in accordance with ASTM G 77 standard, using rings of welding material, blocks of bronze SAE 67, and oil as lubricant. The worn surfaces of rings and blocks were analysed by scanning electron microscopy to determine the wear mechanisms. High contact pressure, high operating temperature, and low relative speed were applied in sliding wear tests to match the conditions in sugar cane mills. Transferred material and evidence of adhesive junctions were detected. Additionally, hardened fragments produced abrasive grooves on the worn surfaces. The welding deposits that presented strong adhesion on the worn surface showed higher mass loss than the materials that presented more abrasive characteristics. Plastic mechanical properties were measured and related to the mass loss. The tested materials presented similar hardness but different yield stress and hardening coefficient. A relationship between wear, strain hardening coefficient, and yield stress was found. The welding deposit that presented the highest hardening coefficient showed the highest mass loss, with evidence of severe adhesion on the worn surface.
Resumo:
The cell provisioning and oviposition process (POP) is a unique characteristic of stingless bees (Meliponini), in which coordinated interactions between workers and queen regulate the filling of brood cells with larval resources and subsequent egg laying. Environmental conditions seem to regulate reproduction in stingless bees; however, little is known about how the amount of food affects quantitative sequences of the process. We examined intrinsic variables by comparing three colonies in distinct conditions (strong, intermediate and weak state). We predicted that some of these variables are correlated with temporal events of POP in Melipona scutellaris colonies. The results demonstrated that the strong colony had shorter periods of POP.