6 resultados para Vortex configurations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincare map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints on the divertor plate.
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
We consider a four dimensional field theory with target space being CP(N) which constitutes a generalization of the usual Skyrme-Faddeev model defined on CP(1). We show that it possesses an integrable sector presenting an infinite number of local conservation laws, which are associated to the hidden symmetries of the zero curvature representation of the theory in loop space. We construct an infinite class of exact solutions for that integrable submodel where the fields are meromorphic functions of the combinations (x(1) + i x(2)) and (x(3) + x(0)) of the Cartesian coordinates of four dimensional Minkowski space-time. Among those solutions we have static vortices and also vortices with waves traveling along them with the speed of light. The energy per unity of length of the vortices show an interesting and intricate interaction among the vortices and waves.
Resumo:
Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system`s overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules Must keep safe pairwise distances. Obtaining Such a molecular arrangement can be considered it packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules Must be greater than some specified tolerance. We have developed a code able to pack millions of atoms. grouped in arbitrarily complex molecules, inside a variety of three-dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straight forward. In addition. different atoms belonging to the same molecule may also be restricted to different spatial regions, in Such a way that more ordered molecular arrangements call be built, as micelles. lipid double-layers, etc. The packing time for state-of-the-art molecular dynamics systems varies front a few seconds to a few Minutes in a personal Computer. The input files are simple and Currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and call be downloaded front http://www.ime.unicamp.br/similar to martinez/packmol/. (C) 2009 Wiley Periodicals. Inc. J Comput Chem 30: 2157-2164, 2009
Resumo:
In this paper, we show the existence of new families of spatial central configurations for the n + 3-body problem, n >= 3. We study spatial central configurations where n bodies are at the vertices of a regular n-gon T and the other three bodies are symmetrically located on the straight line that is perpendicular to the plane that contains T and passes through the center of T. The results have simple and analytic proofs. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we show the existence of three new families of stacked spatial central configurations for the six-body problem with the following properties: four bodies are at the vertices of a regular tetrahedron and the other two bodies are on a line connecting one vertex of the tetrahedron with the center of the opposite face. (c) 2009 Elsevier B.V. All rights reserved.