8 resultados para Turbulence

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The General Ocean Turbulence Model (GOTM) is applied to the diagnostic turbulence field of the mixing layer (ML) over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23 degrees W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated drift-wave turbulence in the plasma edge of a small tokamak by considering solutions of the Hasegawa-Mima equation involving three interacting modes in Fourier space. The resulting low-dimensional dynamics presented periodic as well as chaotic evolution of the Fourier-mode amplitudes, and we performed the control of chaotic behaviour through the application of a fourth resonant wave of small amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the experimental observation of vortex formation and production of tangled vortex distribution in an atomic BEC of (87)Rb atoms submitted to an external oscillatory perturbation. The oscillatory perturbations start by exciting quadrupolar and scissors modes of the condensate. Then regular vortices are observed finally evolving to a vortex tangle configuration. The vortex tangle is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud has suppression of the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel concept of quantum turbulence in finite size superfluids, such as trapped bosonic atoms, is discussed. We have used an atomic (87)Rb Bose-Einstein condensate (BEC) to study the emergence of this phenomenon. In our experiment, the transition to the quantum turbulent regime is characterized by a tangled vortex lines formation, controlled by the amplitude and time duration of the excitation produced by an external oscillating field. A simple model is suggested to account for the experimental observations. The transition from the non-turbulent to the turbulent regime is a rather gradual crossover. But it takes place in a sharp enough way, allowing for the definition of an effective critical line separating the regimes. Quantum turbulence emerging in a finite-size superfluid may be a new idea helpful for revealing important features associated to turbulence, a more general and broad phenomenon. [GRAPHICS] Amplitude versus elapsed time diagram of magnetically excited BEC superfluid, presenting the evolution from the non-turbulent regime, with well separated vortices, to the turbulent regimes, with tangled vortices (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied a Bose-Einstein condensate of (87)Rb atoms under an oscillatory excitation. For a fixed frequency of excitation, we have explored how the values of amplitude and time of excitation must be combined in order to produce quantum turbulence in the condensate. Depending on the combination of these parameters different behaviors are observed in the sample. For the lowest values of time and amplitude of excitation, we observe a bending of the main axis of the cloud. Increasing the amplitude of excitation we observe an increasing number of vortices. The vortex state can evolve into the turbulent regime if the parameters of excitation are driven up to a certain set of combinations. If the value of the parameters of these combinations is exceeded, all vorticity disappears and the condensate enters into a different regime which we have identified as the granular phase. Our results are summarized in a diagram of amplitude versus time of excitation in which the different structures can be identified. We also present numerical simulations of the Gross-Pitaevskii equation which support our observations. (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate Lie symmetries of the Navier-Stokes equations are used for the applications to scaling phenomenon arising in turbulence. In particular, we show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of approximate symmetries that allows to involve the Reynolds number dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes are constructed. We show how the scaling groups obtained can be used to introduce the Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent shear flows. This is demonstrated in the framework of a new approach to derive scaling laws based on symmetry analysis [11]-[13].