12 resultados para Transposition into the contemporary
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Early American crania show a different morphological pattern from the one shared by late Native Americans. Although the origin of the diachronic morphological diversity seen on the continents is still debated, the distinct morphology of early Americans is well documented and widely dispersed. This morphology has been described extensively for South America, where larger samples are available. Here we test the hypotheses that the morphology of Early Americans results from retention of the morphological pattern of Late Pleistocene modern humans and that the occupation of the New World precedes the morphological differentiation that gave rise to recent Eurasian and American morphology. We compare Early American samples with European Upper Paleolithic skulls, the East Asian Zhoukoudian Upper Cave specimens and a series of 20 modern human reference crania. Canonical Analysis and Minimum Spanning Tree were used to assess the morphological affinities among the series, while Mantel and Dow-Cheverud tests based on Mahalanobis Squared Distances were used to test different evolutionary scenarios. Our results show strong morphological affinities among the early series irrespective of geographical origin, which together with the matrix analyses results favor the scenario of a late morphological differentiation of modern humans. We conclude that the geographic differentiation of modern human morphology is a late phenomenon that occurred after the initial settlement of the Americas. Am J Phys Anthropol 144:442-453, 2011. (c) 2010 Wiley-Liss, Inc.
Resumo:
The enzymatic activity of thioredoxin reductase enzymes is endowed by at least two redox centers: a flavin and a dithiol/disulfide CXXC motif. The interaction between thioredoxin reductase and thioredoxin is generally species-specific, but the molecular aspects related to this phenomenon remain elusive. Here, we investigated the yeast cytosolic thioredoxin system, which is composed of NADPH, thioredoxin reductase (ScTrxR1), and thioredoxin 1 (ScTrx1) or thioredoxin 2 (ScTrx2). We showed that ScTrxR1 was able to efficiently reduce yeast thioredoxins (mitochondrial and cytosolic) but failed to reduce the human and Escherichia coli thioredoxin counterparts. To gain insights into this specificity, the crystallographic structure of oxidized ScTrxR1 was solved at 2.4 angstrom resolution. The protein topology of the redox centers indicated the necessity of a large structural rearrangement for FAD and thioredoxin reduction using NADPH. Therefore, we modeled a large structural rotation between the two ScTrxR1 domains (based on the previously described crystal structure, PDB code 1F6M). Employing diverse approaches including enzymatic assays, site-directed mutagenesis, amino acid sequence alignment, and structure comparisons, insights were obtained about the features involved in the species-specificity phenomenon, such as complementary electronic parameters between the surfaces of ScTrxR1 and yeast thioredoxin enzymes and loops and residues (such as Ser(72) in ScTrx2). Finally, structural comparisons and amino acid alignments led us to propose a new classification that includes a larger number of enzymes with thioredoxin reductase activity, neglected in the low/high molecular weight classification.
Resumo:
In many hemolytic disorders, such as malaria, the release of free heme has been involved in the triggering of oxidative stress and tissue damage. Patients presenting with severe forms of malaria commonly have impaired regulatory responses. Although intriguing, there is scarce data about the involvement of heme on the regulation of immune responses. In this study, we investigated the relation of free heme and the suppression of anti-inflammatory mediators such as PGE(2) and TGF-beta in human vivax malaria. Patients with severe disease presented higher hemolysis and higher plasma concentrations of Cu/Zn superoxide dismutase (SOD-1) and lower concentrations of PGE(2) and TGF-beta than those with mild disease. In addition, there was a positive correlation between SOD-1 concentrations and plasma levels of TNF-alpha. During antimalaria treatment, the concentrations of plasma SOD-1 reduced whereas PGE(2) and TGF-beta increased in the individuals severely ill. Using an in vitro model with human mononuclear cells, we demonstrated that the heme effect on the impairment of the production of PGE(2) and TGF-beta partially involves heme binding to CD14 and depends on the production of SOD-1. Aside from furthering the current knowledge about the pathogenesis of vivax malaria, the present results may represent a general mechanism for hemolytic diseases and could be useful for future studies of therapeutic approaches. The Journal of Immunology, 2010, 185: 1196-1204.
Resumo:
Given a model 2-complex K(P) of a group presentation P, we associate to it an integer matrix Delta(P) and we prove that a cellular map f : K(P) -> S(2) is root free (is not strongly surjective) if and only if the diophantine linear system Delta(P) Y = (deg) over right arrow (f) has an integer solution, here (deg) over right arrow (f) is the so-called vector-degree of f
Resumo:
We present the first results of a study investigating the processes that control concentrations and sources of Pb and particulate matter in the atmosphere of Sao Paulo City Brazil Aerosols were collected with high temporal resolution (3 hours) during a four-day period in July 2005 The highest Pb concentrations measured coincided with large fireworks during celebration events and associated to high traffic occurrence Our high-resolution data highlights the impact that a singular transient event can have on air quality even in a megacity Under meteorological conditions non-conducive to pollutant dispersion Pb and particulate matter concentrations accumulated during the night leading to the highest concentrations in aerosols collected early in the morning of the following day The stable isotopes of Pb suggest that emissions from traffic remain an Important source of Pb in Sao Paulo City due to the large traffic fleet despite low Pb concentrations in fuels (C) 2010 Elsevier BV All rights reserved
Resumo:
Trace element and isotopic data obtained for mantle spinel Iherzolites and diorite dykes from the Baldissero massif (Ivrea-Verbano Zone, Western Italy) provide new, valuable constraints on the petrologic and geodynamic evolution of the Southern Alps in Paleozoic to Mesozoic times. Whole rock and mineral chemistry indicates that Baldissero Iherzolites can be regarded as refractory mantle residues following limited melt extraction. In particular, the Light Rare Earth Elements (LREE)-depleted and fractionated compositions of whole rock and clinopyroxene closely match modelling results for refractory residues after low degrees (similar to 4-5%) of near-fractional melting of depleted mantle, possibly under garnet-facies conditions. Following this, the peridotite sequence experienced subsolidus re-equilibration at lithospheric spinel-facies conditions and intrusion of several generations of dykes. However, Iherzolites far from dykes show very modest metasomatic changes, as evidenced by the crystallisation of accessory titanian pargasite and the occurrence of very slight enrichments in highly incompatible trace elements (e.g. Nb). The Re-Os data for Iherzolites far from the dykes yield a 376 Ma (Upper Devonian) model age that is considered to record a partial melting event related to the Variscan orogenic cycle s.l. Dioritic dykes cutting the mantle sequence have whole rock, clinopyroxene and plagioclase characterised by high radiogenic Nd and low radiogenic Sr, which point to a depleted to slightly enriched mantle source. Whole rock and mafic phases of diorites have high Mg# values that positively correlate with the incompatible trace element concentrations. The peridotite at the dyke contact is enriched in orthopyroxene, iron and incompatible trace elements with respect to the Iherzolites far from dykes. Numerical simulations indicate that the geochemical characteristics of the diorites can be explained by flow of a hydrous, silica-saturated melt accompanied by reaction with the ambient peridotite and fractional crystallisation. The composition of the more primitive melts calculated in equilibrium with the diorite minerals show tholeiitic to transitional affinity. Internal Sm-Nd, three-point isochrons obtained for two dykes suggest an Upper Triassic-Lower Jurassic emplacement age (from 204 31 to 198 29 Ma). Mesozoic igneous events are unknown in the southern Ivrea-Verbano Zone (IVZ), but the intrusion of hydrous melts, mostly silica-saturated, have been well documented in the Finero region, i.e. the northernmost part of IVZ and Triassic magmatism with calc-alkaline to shoshonitic affinity is abundant throughout the Central-Eastern Alps. The geochemical and chronological features of the Baldissero diorites shed new light on the geodynamic evolution of the Southern Alps before the opening of the Jurassic Tethys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work we compute the fundamental group of each connected component of the function space of maps from it closed surface into the projective space
Resumo:
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
Two-dimensional and 3D quantitative structure-activity relationships studies were performed on a series of diarylpyridines that acts as cannabinoid receptor ligands by means of hologram quantitative structure-activity relationships and comparative molecular field analysis methods. The quantitative structure-activity relationships models were built using a data set of 52 CB1 ligands that can be used as anti-obesity agents. Significant correlation coefficients (hologram quantitative structure-activity relationships: r 2 = 0.91, q 2 = 0.78; comparative molecular field analysis: r 2 = 0.98, q 2 = 0.77) were obtained, indicating the potential of these 2D and 3D models for untested compounds. The models were then used to predict the potency of an external test set, and the predicted (calculated) values are in good agreement with the experimental results. The final quantitative structure-activity relationships models, along with the information obtained from 2D contribution maps and 3D contour maps, obtained in this study are useful tools for the design of novel CB1 ligands with improved anti-obesity potency.