3 resultados para Transmission line theory
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010
Resumo:
We show how a circuit analysis, used widely in electrical engineering, finds application to problems of light wave injection and transport in subwavelength structures in the optical frequency range. Lumped circuit and transmission-line analysis may prove helpful in the design of plasmonic devices with standard, functional properties.
Resumo:
Anaplasma marginale is a tick-borne pathogen of cattle responsible for the disease anaplasmosis. Data suggest that Rhipicephalus (Boophilus) microplus and R. annulatus may be the major tick vectors of A. marginale in tropical and subtropical regions of the world. In this work we demonstrated the first infection and propagation of a Brazilian isolate of A. marginale (UFMG1) in the BME26 cell line derived originally from embryos of R. (Boophilus) microplus. The establishment of A. marginale infection in a cell line derived from R. (Boophilus) microplus is relevant for studying the A. marginale/tick interface. (C) 2008 Elsevier B.V. All rights reserved.