72 resultados para Transitional Flows

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given a compact 2 dimensional manifold M we classify all continuous flows phi without wandering points on M. This classification is performed by finding finitely many pairwise disjoint open phi-invariant subsets {U(1), U(2), ..., U(n)} of M such that U(i=1)(n) (U(i)) over bar = M and each U(i) is either a suspension of an interval exchange transformation, or a maximal open cylinder made up of closed trajectories of phi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of chaotic particle transport by drift waves propagating in the edge plasma of tokamaks with poloidal zonal flow are described. For large aspect ratio tokamaks, the influence of radial electric field profiles on convective cells and transport barriers, created by the nonlinear interaction between the poloidal flow and resonant waves, is investigated. For equilibria with edge shear flow, particle transport is seen to be reduced when the electric field shear is reversed. The transport reduction is attributed to the robust invariant tori that occur in nontwist Hamiltonian systems. This mechanism is proposed as an explanation for the transport reduction in Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao , Plasma Phys. Controlled Fusion 43, 1181 (2001)] for discharges with a biased electrode at the plasma edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laminar and pulsed flows typical of multi-commuted and multi-pumping flow systems, were evaluated in relation to analytical procedures carried out at high temperatures. As application, the spectrophotometric determination of total reducing sugars (TRS, hydrolyzed sucrose plus reducing sugars) in sugar-cane juice and molasses was selected. The method involves in-line hydrolysis of sucrose and alkaline degradation of the reducing sugars at about 98 degrees C. Better results were obtained with pulsed flows, due to the efficient radial mass transport inherent to the multi-pumping flow system. The proposed system presents favorable characteristics of ruggedness, analytical precision (r.s.d. < 0.013 for typical samples), stability (no measurable baseline drift during 4-h working periods), linearity of the analytical curve (r > 0.992, n = 5, 0.05-0.50% w/v TRS) and sampling rate (65 h(-1)). Results are in agreement with ion chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved flow-based procedure is proposed for turbidimetric sulphate determination in waters. The flow system was designed with solenoid micro-pumps in order to improve mixing conditions and minimize reagent consumption as well as waste generation. Stable baselines were observed in view of the pulsed flow characteristic of the systems designed with solenoid micro-pumps, thus making the use of washing solutions unnecessary. The nucleation process was improved by stopping the flow prior to the measurement, thus avoiding the need of sulphate addition. When a 1-cm optical path flow cell was employed, linear response was achieved within 20-200 mg L(-1), described by the equation S = -0.0767 + 0.00438C (mg L(-1)), r = 0.999. The detection limit was estimated as 3 mg L(-1) at the 99.7% confidence level and the coefficient of variation was 2.4% (n = 20). The sampling rate was estimated as 33 determinations per hour. A long pathlength (100-cm) flow cell based on a liquid core waveguide was exploited to increase sensitivity in turbidimetry. Baseline drifts were avoided by a periodical washing step with EDTA in alkaline medium. Linear response was observed within 7-16 mg L(-1), described by the equation S = -0.865 + 0.132C (mg L(-1)), r = 0.999. The detection limit was estimated as 150 mu g L(-1) at the 99.7% confidence level and the coefficient of variation was 3.0% (n = 20). The sampling rate was estimated as 25 determinations per hour. The results obtained for freshwater and rain water samples were in agreement with those achieved by batch turbidimetry at the 95% confidence level. (C) 2008 Elsevier B.V All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a bond graph methodology is used to model incompressible fluid flows with viscous and thermal effects. The distinctive characteristic of these flows is the role of pressure, which does not behave as a state variable but as a function that must act in such a way that the resulting velocity field has divergence zero. Velocity and entropy per unit volume are used as independent variables for a single-phase, single-component flow. Time-dependent nodal values and interpolation functions are introduced to represent the flow field, from which nodal vectors of velocity and entropy are defined as state variables. The system for momentum and continuity equations is coincident with the one obtained by using the Galerkin method for the weak formulation of the problem in finite elements. The integral incompressibility constraint is derived based on the integral conservation of mechanical energy. The weak formulation for thermal energy equation is modeled with true bond graph elements in terms of nodal vectors of temperature and entropy rates, resulting a Petrov-Galerkin method. The resulting bond graph shows the coupling between mechanical and thermal energy domains through the viscous dissipation term. All kind of boundary conditions are handled consistently and can be represented as generalized effort or flow sources. A procedure for causality assignment is derived for the resulting graph, satisfying the Second principle of Thermodynamics. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A great deal of attention in the supply chain management literature is devoted to study material and demand information flows and their coordination. But in many situations, supply chains may convey information from different nature, they may be an important channel companies have to deliver knowledge, or specifically, technical information to the market. This paper studies the technical flow and highlights its particular requirements. Drawing upon a qualitative field research, it studies pharmaceutical companies, since those companies face a very specific challenge: consumers do not have discretion over their choices, ethical drugs must be prescribed by physicians to be bought and used by final consumers. Technical information flow is rich, and must be redundant and early delivered at multiple points. Thus, apart from the regular material channel where products and order information flow, those companies build a specialized information channel, developed to communicate to those who need it to create demand. Conclusions can be extended to supply chains where products and services are complex and decision makers must be clearly informed about technology-related information. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient`s life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on previous observational studies on cold extreme events over southern South America, some recent studies suggest a possible relationship between Rossby wave propagation remotely triggered and the occurrence of frost. Using the concept of linear theory of Rossby wave propagation, this paper analyzes the propagation of such waves in two different basic states that correspond to austral winters with maximum and minimum generalized frost frequency of occurrence in the Wet Pampa (central-northwest Argentina). In order to determine the wave trajectories, the ray tracing technique is used in this study. Some theoretical discussion about this technique is also presented. The analysis of the basic state, from a theoretical point of view and based on the calculation of ray tracings, corroborates that remotely excited Rossby waves is the mechanism that favors the maximum occurrence of generalized frosts. The basic state in which the waves propagate is what conditions the places where they are excited. The Rossby waves are excited in determined places of the atmosphere, propagating towards South America along the jet streams that act as wave guides, favoring the generation of generalized frosts. In summary, this paper presents an overview of the ray tracing technique and how it can be used to investigate an important synoptic event, such as frost in a specific region, and its relationship with the propagation of large scale planetary waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an affirmative answer to the C(r)-Closing Lemma, r >= 2, for a large class of flows defined on every closed surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a finite difference method for solving two-dimensional viscoelastic unsteady free surface flows governed by the single equation version of the eXtended Pom-Pom (XPP) model. The momentum equations are solved by a projection method which uncouples the velocity and pressure fields. We are interested in low Reynolds number flows and, to enhance the stability of the numerical method, an implicit technique for computing the pressure condition on the free surface is employed. This strategy is invoked to solve the governing equations within a Marker-and-Cell type approach while simultaneously calculating the correct normal stress condition on the free surface. The numerical code is validated by performing mesh refinement on a two-dimensional channel flow. Numerical results include an investigation of the influence of the parameters of the XPP equation on the extrudate swelling ratio and the simulation of the Barus effect for XPP fluids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In various attempts to relate the behaviour of highly-elastic liquids in complex flows to their rheometrical behaviour, obvious candidates for study have been the variation of shear viscosity with shear rate, the two normal stress differences N(1) and N(2) especially N(1), and the extensional viscosity eta(E). In this paper, we shall be mainly interested in `constant-viscosity` Boger fluids, and, accordingly, we shall limit attention to N(1) and eta(E). We shall concentrate on two important flows - axisymmetric contraction flow and ""splashing"" (particularly that which arises when a liquid drop falls onto the free Surface of the same liquid). Modem numerical techniques are employed to provide the theoretical predictions. It is shown that the two obvious manifestations of viscoelastic rheometrical behaviour can sometimes be opposing influences in determining flow characteristics. Specifically, in an axisymmetric contraction flow, high eta(E) , can retard the flow, whereas high N(1) can have the opposite effect. In the splashing experiment, high eta(E) can certainly reduce the height of the so-called Worthington jet, thus confirming some early suggestions, but, again, other rheometrical influences can also have a role to play and the overall picture may not be as clear as it was once envisaged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the development of an implicit finite difference method for solving transient three-dimensional incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have combined a projection method with an implicit technique for treating the pressure on the free surface. The projection method is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface. Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the range [0.01, 0.5]. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop a novel unstructured simulation approach for injection molding processes described by the Hele-Shaw model. Design/methodology/approach - The scheme involves dual dynamic meshes with active and inactive cells determined from an initial background pointset. The quasi-static pressure solution in each timestep for this evolving unstructured mesh system is approximated using a control volume finite element method formulation coupled to a corresponding modified volume of fluid method. The flow is considered to be isothermal and non-Newtonian. Findings - Supporting numerical tests and performance studies for polystyrene described by Carreau, Cross, Ellis and Power-law fluid models are conducted. Results for the present method are shown to be comparable to those from other methods for both Newtonian fluid and polystyrene fluid injected in different mold geometries. Research limitations/implications - With respect to the methodology, the background pointset infers a mesh that is dynamically reconstructed here, and there are a number of efficiency issues and improvements that would be relevant to industrial applications. For instance, one can use the pointset to construct special bases and invoke a so-called ""meshless"" scheme using the basis. This would require some interesting strategies to deal with the dynamic point enrichment of the moving front that could benefit from the present front treatment strategy. There are also issues related to mass conservation and fill-time errors that might be addressed by introducing suitable projections. The general question of ""rate of convergence"" of these schemes requires analysis. Numerical results here suggest first-order accuracy and are consistent with the approximations made, but theoretical results are not available yet for these methods. Originality/value - This novel unstructured simulation approach involves dual meshes with active and inactive cells determined from an initial background pointset: local active dual patches are constructed ""on-the-fly"" for each ""active point"" to form a dynamic virtual mesh of active elements that evolves with the moving interface.