65 resultados para Ti-30Ta nanotubes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.
Resumo:
With the increase in life expectancy, biomaterials have become an increasingly important focus of research because they are used to replace parts and functions of the human body, thus contributing to improved quality of life. In the development of new biomaterials, the Ti-15Mo alloy is particularly significant. In this study, the Ti-15Mo alloy was produced using an arc-melting furnace and then characterized by density, X-ray diffraction, optical microscopy, hardness and dynamic elasticity modulus measurements, and cytotoxicity tests. The microstructure was obtained with β predominance. Microhardness, elasticity modulus, and cytotoxicity testing results showed that this material has great potential for use as biomaterial, mainly in orthopedic applications.
Resumo:
Os aços inoxidáveis supermartensíticos (SMSS) são usados em ambientes agressivos devido à sua boa soldabilidade, boas propriedades mecânicas em temperaturas elevadas e superior resistência à corrosão sob tensão. Aplicações na exploração de petróleo demandam superior combinação de propriedades e os aços inoxidáveis duplex e superduplex têm sido aplicados nessa área, a despeito de seus custos elevados. Os SMSS consistem numa alternativa técnica e econômica ao uso daqueles aços. Nesse trabalho, adições de Nb e Ti foram realizadas com o intuito de minimizar o efeito de sensitização, promover o refino de grãos e foram estudados os aspectos microestruturais e a resistência à corrosão por pites em água do mar. A formação e a evolução dos pites foram acompanhadas por ensaios de corrosão, microscopia óptica e eletrônica, focalizando suas morfologias. O aço com Ti apresentou o melhor desempenho quanto à corrosão, com o maior potencial de corrosão e menor potencial de pite entre os aços em estudo. O aço com Nb, apesar de apresentar potencial de corrosão superior ao do aço sem adição, teve um potencial de pite inferior ao do mesmo.
Resumo:
The heterometal alkoxide [FeCl{Ti2(OPr i)9}] (1) was employed as a single source precursor for the preparation of Fe/Ti oxides under inert atmosphere. Three different synthetic procedures were adopted in the processing of 1, either employing aqueous HNO3 or HCl solutions, or in the absence of mineral acids. Products were characterised by powder X-ray diffractometry, scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDS) and Raman, electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. Oxide products contained titanium(IV) and either iron(III) or iron(II), depending on reaction conditions and thermal treatment temperatures. An interesting iron(III)→iron(II) reduction was observed at 1000 ºC in the HNO3-containing system, leading to the detection of ilmenite (FeTiO3). SEM/EDS studies revealed a highly heterogeneous metal distribution in all products, possibly related to the presence of a significant content of carbon and of structural defects (oxygen vacancies) in the solids.
Resumo:
Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C and 1000 A degrees C. The rapidly solidified splats presented nanometric scale microstructures which facilitated the attainment of equilibrium conditions. The destabilization of Ti(3)Si due to oxygen/nitrogen contamination has been noted.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
We show that carbon nanotubes (CNTs) with high density of defects can present a strong electronic interaction with nanoparticles of Pt-Ru with average particle size of 3.5 +/- 0.8 nm. Depending on the Pt-Ru loading on the CNTs, CO and methanol oxidation reactions suggest there is a charge transfer between Pt-Ru that in turn provokes a decrease in the electronic interaction taking place between Ru and Pt in the PtRu alloy. The CO stripping potentials were observed at about 0.65 and 0.5 V for Pt-Ru/CNT electrodes with Pt-Ru loadings of 10 and 20, and 30 wt %, respectively. (C) 2008 The Electrochemical Society. [DOI: 10.1149/1.2990222] All rights reserved.
Resumo:
In this work, the electron field emission behaviour of electrodes formed by carbon nanotubes (CNTs) grown onto monolithic vitreous carbon (VCarbon) substrates with microcavities is presented. Scanning electron microscopy was used to characterize the microstructure of the films. Tungsten probes, stainless steel sphere, and phosphor electrodes were employed in the electron field emission study. The CNT/VCarbon composite represents a route to inexpensive excellent large area electron emission cathodes with fields as low as 2.1 V mu m(-1). In preliminary lifetime tests for a period of about 24 h at an emission current of about 4 mA cm(-2), there is an onset degradation of the emission current of about 28%, which then stabilizes. Electron emission images of the composites show the cavity of the samples act as separate emission sites and predominantly control the emission process. The emission of CNTs/VCarbon was found to be stable for several hours. (c) 2008 American Institute of Physics.
Resumo:
Context. The formation and evolution of the Galactic bulge and its relationship with the other Galactic populations is still poorly understood. Aims. To establish the chemical differences and similarities between the bulge and other stellar populations, we performed an elemental abundance analysis of alpha- (O, Mg, Si, Ca, and Ti) and Z-odd (Na and Al) elements of red giant stars in the bulge as well as of local thin disk, thick disk and halo giants. Methods. We use high-resolution optical spectra of 25 bulge giants in Baade's window and 55 comparison giants (4 halo, 29 thin disk and 22 thick disk giants) in the solar neighborhood. All stars have similar stellar parameters but cover a broad range in metallicity (-1.5 < [Fe/H] < +0.5). A standard 1D local thermodynamic equilibrium analysis using both Kurucz and MARCS models yielded the abundances of O, Na, Mg, Al, Si, Ca, Ti and Fe. Our homogeneous and differential analysis of the Galactic stellar populations ensured that systematic errors were minimized. Results. We confirm the well-established differences for [alpha/Fe] at a given metallicity between the local thin and thick disks. For all the elements investigated, we find no chemical distinction between the bulge and the local thick disk, in agreement with our previous study of C, N and O but in contrast to other groups relying on literature values for nearby disk dwarf stars. For -1.5 < [Fe/H] < -0.3 exactly the same trend is followed by both the bulge and thick disk stars, with a star-to-star scatter of only 0.03 dex. Furthermore, both populations share the location of the knee in the [alpha/Fe] vs. [Fe/H] diagram. It still remains to be confirmed that the local thick disk extends to super-solar metallicities as is the case for the bulge. These are the most stringent constraints to date on the chemical similarity of these stellar populations. Conclusions. Our findings suggest that the bulge and local thick disk stars experienced similar formation timescales, star formation rates and initial mass functions, confirming thus the main outcomes of our previous homogeneous analysis of [O/Fe] from infrared spectra for nearly the same sample. The identical a-enhancements of thick disk and bulge stars may reflect a rapid chemical evolution taking place before the bulge and thick disk structures we see today were formed, or it may reflect Galactic orbital migration of inner disk/bulge stars resulting in stars in the solar neighborhood with thick-disk kinematics.
Resumo:
We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.
Resumo:
Nitrogen-doped carbon nanotubes can provide reactive sites on the porphyrin-like defects. It is well known that many porphyrins have transition-metal atoms, and we have explored transition-metal atoms bonded to those porphyrin-like defects inN-doped carbon nanotubes. The electronic structure and transport are analyzed by means of a combination of density functional theory and recursive Green's function methods. The results determined the heme B-like defect (an iron atom bonded to four nitrogens) is the most stable and has a higher polarization current for a single defect. With randomly positioned heme B defects in nanotubes a few hundred nanometers long, the polarization reaches near 100%, meaning they are effective spin filters. A disorder-induced magnetoresistance effect is also observed in those long nanotubes, and values as high as 20 000% are calculated with nonmagnectic eletrodes.
Resumo:
We present density of states and electronic transport calculations of single vacancies in carbon nanotubes. We confirm that the defect reconstructs into a pentagon and a nonagon, following the removal of a single carbon atom. This leads to the formation of a dangling bond. Finally, we demonstrate that care must be taken when calculating the density of states of impurities in one-dimensional systems in general. Traditional treatments of these systems using periodic boundary conditions leads to the formation of minigaps even in the limit of large unit cells.
Resumo:
The adsorption of atomic and molecular hydrogen on armchair and zigzag boron carbonitride nanotubes is investigated within the ab initio density functional theory. The adsorption of atomic H on the BC(2)N nanotubes presents properties which are promising for nanoelectronic applications. Depending on the adsorption site for the H, the Fermi energy moves toward the bottom of the conduction band or toward the top of the valence band, leading the system to exhibit donor or acceptor characteristics, respectively. The H(2) molecules are physisorbed on the BC(2)N surface for both chiralities. The binding energies for the H(2) molecules are slightly dependent on the adsorption site, and they are near to the range to work as a hydrogen storage medium.
Resumo:
The nucleus (46)Ti has been studied with the reaction (42)Ca((7)Li,p2n)(46)Ti at a bombarding energy of 31 MeV. Thin target foils backed with a thick Au layer were used. Five new levels of negative parity were observed. Several lifetimes have been determined with the Doppler shift attenuation method. Low-lying experimental negative-parity levels are assigned to three bands with K(pi) = 3, 0, and 4, which are interpreted in terms of the large-scale shell model, considering particle-hole excitations from d(3/2) and s(1/2) orbitals. Shell model calculations were performed using a few effective interactions. However, good agreement was not achieved in the description of either negative- or positive-parity low-lying levels.
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.