10 resultados para Three-component Magma Mixing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Cosmic shear requires high precision measurement of galaxy shapes in the presence of the observational point spread function (PSF) that smears out the image. The PSF must therefore be known for each galaxy to a high accuracy. However, for several reasons, the PSF is usually wavelength dependent; therefore, the differences between the spectral energy distribution of the observed objects introduce further complexity. In this paper, we investigate the effect of the wavelength dependence of the PSF, focusing on instruments in which the PSF size is dominated by the diffraction limit of the telescope and which use broad-band filters for shape measurement. We first calculate biases on cosmological parameter estimation from cosmic shear when the stellar PSF is used uncorrected. Using realistic galaxy and star spectral energy distributions and populations and a simple three-component circular PSF, we find that the colour dependence must be taken into account for the next generation of telescopes. We then consider two different methods for removing the effect: (i) the use of stars of the same colour as the galaxies and (ii) estimation of the galaxy spectral energy distribution using multiple colours and using a telescope model for the PSF. We find that both of these methods correct the effect to levels below the tolerances required for per cent level measurements of dark energy parameters. Comparison of the two methods favours the template-fitting method because its efficiency is less dependent on galaxy redshift than the broad-band colour method and takes full advantage of deeper photometry.
Resumo:
The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hydroxypropargylpiperidones rac-1-3 were efficiently obtained by a one-pot three-component coupling reaction; enantioenriched propargylpiperidones were then obtained by a kinetic resolution process using the lipase from Candida antarctica. Lipase CALB has been shown to efficiently catalyse the stereocontrolled acetylation of hydroxypropargylpiperidones rac-3 by promoting stereodiscrimination at the carbinolic centre. The enzymatic catalytic processes allow the separation of the (S,R)- and (S,S)-3 diastereoisomers into the corresponding acetates produced as a (R,S)- and (R,R)-6 diastereoisomeric pair. The CALB was able to discriminate the stereogenic centre of the secondary (R)-enantiomer of rac-3 according to the Kaslauzkas rule. The remote stereogenic centre was not discriminated by the lipase. The functionalised enantioenriched diastereoisomers obtained are important building blocks in organic synthesis. (C) 2010 Elsevier Ltd. All rights reserved.
MAGNETOHYDRODYNAMIC SIMULATIONS OF RECONNECTION AND PARTICLE ACCELERATION: THREE-DIMENSIONAL EFFECTS
Resumo:
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Resumo:
In this Letter we present soliton solutions of two coupled nonlinear Schrodinger equations modulated in space and time. The approach allows us to obtain solitons for a large variety of solutions depending on the nonlinearity and potential profiles. As examples we show three cases with soliton solutions: a solution for the case of a potential changing from repulsive to attractive behavior, and the other two solutions corresponding to localized and delocalized nonlinearity terms, respectively. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.
Resumo:
The Araes gold deposit, located in eastern Mato Grosso State, central Brazil, is hosted in Neoproterozoic volcanosedimentary rocks of the Paraguay belt, which formed during collision of the Amazonian craton and the Rio Apa block. Ar-40/Ar-39 geochronology and Pb and S isotopic analyses constrain the timing and sources of mineralization. Three biotite flakes from two samples of metavolcanic host rock yield Ar-40/Ar-39 plateau ages between 5941 and 531 Ma, interpreted as cooling ages following regional metamorphism. Clay minerals from a hydrothermal alteration zone yield an Ar-40/Ar-39 integrated age of 503 +/- 3 Ma. Galena grains from ore-bearing veins yield values of Pb-206/(204)pb from 17.952 to 18.383, Pb-207/Pb-204 from 15.156 to 15.811, and Pb-208/Pb-204 from 38.072 to 39.681. Pyrite grains from ore-bearing veins yield values of Pb-206/Pb-204 from 18.037 to 18.202, Pb-207/Pb-204 from 15.744 to 15.901., and Pb-208/(204)pb from 38.338 to 38.800. Pb isotope variations may be explained in terms of mixing a less radiogenic lead component (mu similar to 8.4) from mafic and ultramafic basement host-rocks (Nova Xavantina metavolcanosedimentary rocks) and a more radiogenic lead component (mu similar to 9.2) probably derived from supracrustal rocks (Cuiaba sedimentary groups). Sulfur isotope compositions are homogeneous, with delta S-34 values ranging from -1.1 parts per thousand to 0.9 parts per thousand (galena) and -0.7 parts per thousand to 0.9 parts per thousand (pyrite), suggesting a mantle-derived reservoir for the mineralizing solutions. Based on the Ar, Pb, and S isotope data, we suggest that the precious metals were remobilized from metavolcanic host rocks by hydrothermal solutions during Brasilide-Panafrican regional metamorphism. The Arabs gold deposit probably formed during a late stage of the orogeny, coeval with other mineralization events in the Paraguay Belt.
Resumo:
BACKGROUND: A major problem in Chagas disease donor screening is the high frequency of samples with inconclusive results. The objective of this study was to describe patterns of serologic results among donors to the three Brazilian REDS-II blood centers and correlate with epidemiologic characteristics. STUDY DESIGN AND METHODS: The centers screened donor samples with one Trypanosoma cruzi lysate enzyme immunoassay (EIA). EIA-reactive samples were tested with a second lysate EIA, a recombinant-antigen based EIA, and an immunfluorescence assay. Based on the serologic results, samples were classified as confirmed positive (CP), probable positive (PP), possible other parasitic infection (POPI), and false positive (FP). RESULTS: In 2007 to 2008, a total of 877 of 615,433 donations were discarded due to Chagas assay reactivity. The prevalences (95% confidence intervals [CIs]) among first-time donors for CP, PP, POPI, and FP patterns were 114 (99-129), 26 (19-34), 10 (5-14), and 96 (82-110) per 100,000 donations, respectively. CP and PP had similar patterns of prevalence when analyzed by age, sex, education, and location, suggesting that PP cases represent true T. cruzi infections; in contrast the demographics of donors with POPI were distinct and likely unrelated to Chagas disease. No CP cases were detected among 218,514 repeat donors followed for a total of 718,187 person-years. CONCLUSION: We have proposed a classification algorithm that may have practical importance for donor counseling and epidemiologic analyses of T. cruzi-seroreactive donors. The absence of incident T. cruzi infections is reassuring with respect to risk of window phase infections within Brazil and travel-related infections in nonendemic countries such as the United States.