23 resultados para Thalamic nuclei

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies from our laboratory have documented that the medial hypothalamic defensive system is critically involved in processing actual and contextual predatory threats, and that the dorsal premammillary nucleus (PMd) represents the hypothalamic site most responsive to predatory threats. Anatomical findings suggest that the PMd is in a position to modulate memory processing through a projecting branch to specific thalamic nuclei, i.e., the nucleus reuniens (RE) and the ventral part of the anteromedial nucleus (AMv). In the present study, we investigated the role of these thalamic targets in both unconditioned (i.e., fear responses to predatory threat) and conditioned (i.e., contextual responses to predator-related cues) defensive behaviors. During cat exposure, all experimental groups exhibited intense defensive responses with the animals spending most of the time in the home cage displaying freezing behavior. However, during exposure to the environment previously associated with a cat, the animals with combined RE + AMv lesions, and to a lesser degree, animals with single AMv unilateral lesions, but not animals with single RE lesions, presented a reduction of contextual conditioned defensive responses. Overall, the present results provide clear evidence suggesting that the PMd`s main thalamic targets (i.e., the nucleus reuniens and the AMv) seem to be critically involved in the emotional memory processing related to predator cues. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cocaine- and amphetamine-regulated transcript (CART) is widespread in the rodent brain. CART has been implicated in many different functions including reward, feeding, stress responses, sensory processing, learning and memory formation. Recent studies have suggested that CART may also play a role in neural development. Therefore, in the present study we compared the distribution pattern and levels of CART mRNA expression in the forebrain of male and female rats at different stages of postnatal development: P06, P26 and P66. At 6 days of age (P06), male and female rats showed increased CART expression in the somatosensory and piriform cortices, indusium griseum, dentate gyrus, nucleus accumbens, and ventral premammillary nucleus. Interestingly, we found a striking expression of CART mRNA in the ventral posteromedial and ventral posterolateral thalamic nuclei. This thalamic expression was absent at P26 and P66. Contrastingly, at P06 CART mRNA expression was decreased in the arcuate nucleus. Comparing sexes, we found increased CART mRNA expression in the anteroventral periventricular nucleus of adult females. In other regions including the CA1, the lateral hypothalamic area and the dorsomedial nucleus of the hypothalamus, CART expression was not different comparing postnatal ages and sexes. Our findings indicate that CART gene expression is induced in a distinct temporal and spatial manner in forebrain sites of male and female rats. They also suggest that CART peptide participate in the development of neural pathways related to selective functions including sensory processing, reward and memory formation. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cells recruited by the innate immune response rely on surface-expressed molecules in order to receive signals from the local environment and to perform phagocytosis, cell adhesion, and others processes linked to host defense. Hundreds of surface antigens designated through a cluster of differentiation (CD) number have been used to identify particular populations of leukocytes. Surprisingly, we verified that the genes that encode Cd36 and Cd83 are constitutively expressed in specific neuronal cells. For instance, Cd36 mRNA is expressed in some regions related to circuitry involved in pheromone responses and reproductive behavior. Cd44 expression, reanalyzed and detailed here, is associated with the laminar formation and midline thalamic nuclei in addition to striatum, extended amygdala, and a few hypothalamic, cortical, and hippocampal regions. A systemic immune challenge was able to increase Cd44 expression quickly in the area postrema and motor nucleus of the vagus but not in regions presenting expressive constitutive expression. In contrast to Cd36 and Cd44, Cd83 message was widely distributed from the olfactory bulb to the brain stem reticular formation, sparing the striatopallidum, olivary region, and cerebellum. Its pattern of expression nevertheless remained strongly associated with hypothalamic, thalamic, and hindbrain nuclei. Unlike the other transcripts, Cd83 mRNA was rapidly modulated by restraint stress. Our results indicate that these molecules might play a role in specific neural circuits and present functions other than those attributed to leukocyte biology. The data also suggest that these surface proteins, or their associated mRNA, could be used to label neurons in specific circuits/regions. J. Comp. Neurol. 517:906-924, 2009. (C) 2009 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aircraft measurements of cloud condensation nuclei (CCN) during the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) were conducted over the Southwestern Amazon region in September-October 2002, to emphasize the dry-to-wet transition season. The CCN concentrations were measured for values within the range 0.1-1.0% of supersaturation. The CCN concentration inside the boundary layer revealed a general decreasing trend during the transition from the end of the dry season to the onset of the wet season. Clean and polluted areas showed large differences. The differences were not so strong at high levels in the troposphere and there was evidence supporting the semi-direct aerosol effect in suppressing convection through the evaporation of clouds by aerosol absorption. The measurements also showed a diurnal cycle following biomass burning activity. Although biomass burning was the most important source of CCN, it was seen as a source of relatively efficient CCN, since the increase was significant only at high supersaturations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth`s atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth`s atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandibular movements occur through the triggering of trigeminal motoneurons. Aberrant movements by orofacial muscles are characteristic of orofacial motor disorders, such as nocturnal bruxism (clenching or grinding of the dentition during sleep). Previous studies have suggested that autonomic changes occur during bruxism episodes. Although it is known that emotional responses increase jaw movement, the brain pathways linking forebrain limbic nuclei and the trigeminal motor nucleus remain unclear. Here we show that neurons in the lateral hypothalamic area, in the central nucleus of the amygdala, and in the parasubthalamic nucleus, project to the trigeminal motor nucleus or to reticular regions around the motor nucleus (Regio h) and in the mesencephalic trigeminal nucleus. We observed orexin co-expression in neurons projecting from the lateral hypothalamic area to the trigeminal motor nucleus. In the central nucleus of the amygdala, neurons projecting to the trigeminal motor nucleus are innervated by corticotrophin-releasing factor immunoreactive fibers. We also observed that the mesencephalic trigeminal nucleus receives dense innervation from orexin and corticotrophin-releasing factor immunoreactive fibers. Therefore, forebrain nuclei related to autonomic control and stress responses might influence the activity of trigeminal motor neurons and consequently play a role in the physiopathology of nocturnal bruxism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To analyze the differential recruitment of the raphe nuclei during different phases of feeding behavior, rats were subjected to a food restriction schedule (food for 2 h/day, during 15 days). The animals were submitted to different feeding conditions, constituting the experimental groups: search for food (MFS), food ingestion (MFI), satiety (MFSa) and food restriction control (MFC). A baseline condition (BC) group was included as further control. The MFI and MFC groups, which presented greater autonomic and somatic activation, had more FOS-immunoreactive (FOS-IR) neurons. The MFI group presented more labeled cells in the linear (LRN) and dorsal (DRN) nuclei; the MFC group showed more labeling in the median (MRN), pontine (PRN), magnus (NRM) and obscurus (NRO) nuclei; and the MFSa group had more labeled cells in the pallidus (NRP). The BC exhibited the lowest number of reactive cells. The PRN presented the highest percentage of activation in the raphe while the DRN the lowest. Additional experiments revealed few double-labeled (FOS-IR+ 5-HT-IR) cells within the raphe nuclei in the MFI group, suggesting little serotonergic activation in the raphe during food ingestion. These findings suggest a differential recruitment of raphe nuclei during various phases of feeding behavior. Such findings may reflect changes in behavioral state (e.g., food-induced arousal versus sleep) that lead to greater motor activation, and consequently increased FOS expression. While these data are consistent with the idea that the raphe system acts as gain setter for autonomic and somatic activities, the functional complexity of the raphe is not completely understood. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amazon is one of the few continental regions where atmospheric aerosol particles and their effects on climate are not dominated by anthropogenic sources. During the wet season, the ambient conditions approach those of the pristine pre-industrial era. We show that the fine submicrometer particles accounting for most cloud condensation nuclei are predominantly composed of secondary organic material formed by oxidation of gaseous biogenic precursors. Supermicrometer particles, which are relevant as ice nuclei, consist mostly of primary biological material directly released from rainforest biota. The Amazon Basin appears to be a biogeochemical reactor, in which the biosphere and atmospheric photochemistry produce nuclei for clouds and precipitation sustaining the hydrological cycle. The prevailing regime of aerosol-cloud interactions in this natural environment is distinctly different from polluted regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some aerosol particles, known as ice nuclei, can initiate ice formation in clouds, thereby influencing precipitation, cloud dynamics and the amount of incoming and outgoing solar radiation. In the absence of biomass burning, aerosol mass concentrations in the Amazon basin are low(1). Tropical forests emit primary biological particles directly into the atmosphere; secondary organic aerosols form from the emission and oxidation of biogenic gases(2). In addition, particles derived from biomass burning in central Africa, marine aerosols, and windblown dust from North Africa(3-5) often reach the central part of the Amazon basin during the wet season. The contribution of these aerosol sources to ice nucleation in the region is uncertain. Here we present observations of the concentration and elemental composition of ice nuclei in the Amazon basin during the wet season. Using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, we show that ice nuclei are primarily composed of carbonaceous material and dust. We show that biological particles dominate the carbonaceous fraction, whereas import of Saharan dust explains the intermittent appearance of dust-containing nuclei. We conclude that ice-nucleus concentration and abundance can be explained almost entirely by local emissions of biological particles supplemented by import of Saharan dust. Using a simple model, we tentatively suggest that the contribution of local biological particles to ice nucleation is increased at higher atmospheric temperatures, whereas the contribution of dust particles is increased at lower temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments have shown that the multimode approach for describing the fission process is compatible with the observed results. Asystematic analysis of the parameters obtained by fitting the fission-fragment mass distribution to the spontaneous and low-energy data has shown that the values for those parameters present a smooth dependence upon the nuclear mass number. In this work, a new methodology is introduced for studying fragment mass distributions through the multimode approach. It is shown that for fission induced by energetic probes (E > 30 MeV) the mass distribution of the fissioning nuclei produced during the intranuclear cascade and evaporation processes must be considered in order to have a realistic description of the fission process. The method is applied to study (208)Pb, (238)U, (239)Np and (241)Am fission induced by protons or photons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the highest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than similar to 6 x 10(19) eV and AGN at a distance less than similar to 75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate from extra-galactic sources close enough so that their flux is not significantly attenuated by interaction with the cosmic background radiation (the Greisen-Zatsepin-Kuz`min effect). The angular scale of the correlation observed is a few degrees, which suggests a predominantly light composition unless the magnetic fields are very weak outside the thin disk of our galaxy. Our present data do not identify AGN as the sources of cosmic rays unambiguously, and other candidate sources which are distributed as nearby AGN are not ruled out. We discuss the prospect of unequivocal identification of individual sources of the highest-energy cosmic rays within a few years of continued operation of the Pierre Auger Observatory. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tunneling of composite systems, where breakup may occur during the barrier penetration process, is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei, on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at energies near and below the Coulomb barrier. However, clear evidence for enhancement due to halo properties seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus (6)He with the actinide nucleus (238)U is significantly enhanced as compared to the fusion of a similar projectile with no halo. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement is also observed in the (6)He + (209)Bi system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that halo effects enhance fusion cross sections of weakly bound systems, comparing with the situation when there is no-halo. We introduce dimensionless fusion functions and energy variable quantity to investigate systematical trends in the fusion cross sections of weakly bound nuclei at near-barrier energies. We observe very clearly complete fusion suppression at energies above the barrier due to dynamic effects of the breakup on fusion. We explain this suppression in terms of the repulsive polarization potential produced by the breakup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F On medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.