2 resultados para Text mining, Classificazione, Stemming, Text categorization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The amount of textual information digitally stored is growing every day. However, our capability of processing and analyzing that information is not growing at the same pace. To overcome this limitation, it is important to develop semiautomatic processes to extract relevant knowledge from textual information, such as the text mining process. One of the main and most expensive stages of the text mining process is the text pre-processing stage, where the unstructured text should be transformed to structured format such as an attribute-value table. The stemming process, i.e. linguistics normalization, is usually used to find the attributes of this table. However, the stemming process is strongly dependent on the language in which the original textual information is given. Furthermore, for most languages, the stemming algorithms proposed in the literature are computationally expensive. In this work, several improvements of the well know Porter stemming algorithm for the Portuguese language, which explore the characteristics of this language, are proposed. Experimental results show that the proposed algorithm executes in far less time without affecting the quality of the generated stems.
Resumo:
Automatic summarization of texts is now crucial for several information retrieval tasks owing to the huge amount of information available in digital media, which has increased the demand for simple, language-independent extractive summarization strategies. In this paper, we employ concepts and metrics of complex networks to select sentences for an extractive summary. The graph or network representing one piece of text consists of nodes corresponding to sentences, while edges connect sentences that share common meaningful nouns. Because various metrics could be used, we developed a set of 14 summarizers, generically referred to as CN-Summ, employing network concepts such as node degree, length of shortest paths, d-rings and k-cores. An additional summarizer was created which selects the highest ranked sentences in the 14 systems, as in a voting system. When applied to a corpus of Brazilian Portuguese texts, some CN-Summ versions performed better than summarizers that do not employ deep linguistic knowledge, with results comparable to state-of-the-art summarizers based on expensive linguistic resources. The use of complex networks to represent texts appears therefore as suitable for automatic summarization, consistent with the belief that the metrics of such networks may capture important text features. (c) 2008 Elsevier Inc. All rights reserved.