2 resultados para Technicans in industry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Accessibility has become a serious issue to be considered by various sectors of the society. However, what are the differences between the perception of accessibility by academy, government and industry? In this paper, we present an analysis of this issue based on a large survey carried out with 613 participants involved with Web development, from all of the 27 Brazilian states. The paper presents results from the data analysis for each sector, along with statistical tests regarding the main different issues related to each of the sectors, such as: government and law, industry and techniques, academy and education. The concern about accessibility law is poor even amongst people from government sector. The analyses have also pointed out that the academy has not been addressing accessibility training accordingly. The knowledge about proper techniques to produce accessible contents is better than other sectors`, but still limited in industry. Stronger investments in training and in the promotion of consciousness about the law may be pointed as the most important tools to help a more effective policy on Web accessibility in Brazil.
Resumo:
Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.