4 resultados para Structural similarity index

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glycolytic enzyme glyceraldehyde-3 -phosphate dehydrogenase (GAPDH) is as an attractive target for the development of novel antitrypanosomatid agents. In the present work, comparative molecular field analysis and comparative molecular similarity index analysis were conducted on a large series of selective inhibitors of trypanosomatid GAPDH. Four statistically significant models were obtained (r(2) > 0.90 and q(2) > 0.70), indicating their predictive ability for untested compounds. The models were then used to predict the potency of an external test set, and the predicted values were in good agreement with the experimental results. Molecular modeling studies provided further insight into the structural basis for selective inhibition of trypanosomatid GAPDH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

XACb0070 is an uncharacterized protein coded by the two large plasmids isolated from Xanthomonas axonopodis pv. cirri, the agent of citrus canker and responsible for important economical losses in citrus world production. XACb0070 presents sequence homology only with other hypothetical proteins belonging to plant pathogens, none of which have their structure determined. The NMR-derived solution structure reveals this protein is a homodimer in which each monomer presents two domains with different structural and dynamic properties: a folded N-terminal domain with beta alpha alpha topology which mediates dimerization and a long disordered C-terminal tail. The folded domain shows high structural similarity to the ribbon-helix-helix transcriptional repressors, a family of DNA-binding proteins of conserved 3D fold but low sequence homology: indeed XACb0070 binds DNA. Primary sequence and fold comparison of XACb0070 with other proteins of the ribbon-helix-helix family together with examination of the genes in the vicinity of xacb0070 suggest the protein might be the component of a toxin-antitoxin system. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaredoxins (Grxs) are small (9-12 kDa) heat-stable proteins that are ubiquitously distributed. In Saccharomyces cerevisiae, seven Grx enzymes have been identified. Two of them (yGrx1 and yGrx2) are dithiolic, possessing a conserved Cys-Pro-Tyr-Cys motif. Here, we show that yGrx2 has a specific activity 15 times higher than that of yGrx1, although these two oxidoreductases share 64% identity and 85% similarity with respect to their amino acid sequences. Further characterization of the enzymatic activities through two-substrate kinetics analysis revealed that yGrx2 possesses a lower Km for glutathione and a higher turnover than yGrx1. To better comprehend these biochemical differences, the pK(a) of the N-terminal active-site cysteines (Cys27) of these two proteins and of the yGrx2-C30S mutant were determined. Since the pK(a) values of the yGrx1 and yGix2 Cys27 residues are very similar, these parameters cannot account for the difference observed between their specific activities. Therefore, crystal structures of yGrx2 in the oxidized form and with a glutathionyl mixed disulfide were determined at resolutions of 2.05 and 1.91 angstrom, respectively. Comparisons of yGrx2 structures with the recently determined structures of yGrx1 provided insights into their remarkable functional divergence. We hypothesize that the substitutions of Ser23 and Gln52 in yGrx1 by Ala23 and Glu52 in yGrx2 modify the capability of the active-site C-terminal cysteine to attack the mixed disulfide between the N-terminal active-site cysteine and the glutathione molecule. Mutagenesis studies supported this hypothesis. The observed structural and functional differences between yGrx1 and yGrx2 may reflect variations in substrate specificity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the structural continuum in CATH and the extent to which superfamilies adopt distinct folds. Although most superfamilies are structurally conserved, in some of the most highly populated superfamilies (4% of all superfamilies) there is considerable structural divergence. While relatives share a similar fold in the evolutionary conserved core, diverse elaborations to this core can result in significant differences in the global structures. Applying similar protocols to examine the extent to which structural overlaps occur between different fold groups, it appears this effect is confined to just a few architectures and is largely due to small, recurring super-secondary motifs (e.g., alpha beta-motifs, alpha-hairpins). Although 24% of superfamilies overlap with superfamilies having different folds, only 14% of nonredundant structures in CATH are involved in overlaps. Nevertheless, the existence of these overlaps suggests that, in some regions of structure space, the fold universe should be seen as more continuous.