8 resultados para Steroid hormones
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The in vitro effect of testosterone on human neutrophil function was investigated. Blood neutrophils from healthy male subjects were isolated and treated with 10 nM, 0.1 and 10 mu M testosterone for 24 h. As compared with untreated cells, the testosterone treatment produced a significant decrease of superoxide production as indicated by the measurement of extra- and intracellular superoxide content. An increment in the production of nitric oxide was observed at 0.1 and 10 mu M testosterone concentrations, whereas no effect was found for 10 nM. Intracellular calcium mobilization was significantly increased at 10 nM, whereas it was reduced at 10 mu M testosterone. There was an increase in phagocytic capacity at 10 nM and a decrease of microbicidal activity in neutrophils treated with testosterone at 10 mu M. Glutathione reductase activity was increased by testosterone treatment, whereas no effect was observed in other antioxidant enzyme activities. An increase in the content of thiol groups was observed at all testosterone concentrations. Lipid peroxidation in neutrophils evaluated by levels of TBARS was decreased at 10 nM and 0.1 mu M testosterone. These results indicate the antioxidant properties of testosterone in neutrophils as suggested by reduction of superoxide anion production, and lipid peroxidation, and by the increase in nitric oxide production, glutathione reductase activity and the content of thiol groups. Therefore, the plasma levels of testosterone are important regulators of neutrophil function and so of the inflammatory response. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The noradrenergic nucleus locus coeruleus (LC) has been reported to regulate luteinising hormone (LH) secretion in female rats. Both oestrogen and progestin receptors have been demonstrated in LC neurones, suggesting that these cells are possibly responsive to variations in circulating levels of ovarian steroids. We therefore evaluated changes in the activity of LC neurones during the oestrous cycle and after ovarian-steroid treatment in ovariectomised (OVX) rats, as determined by immunoreactivity to Fos-related antigens (FRA), which comprises all of the known members of the Fos family. Effects of ovarian steroids on the firing rate of LC neurones were also determined in a slice preparation. The number of FRA/tyrosine hydroxylase (TH)-immunoreactive (ir) neurones in the LC increased from 14.00-16.00 h on pro-oestrus, coinciding with the onset of the LH surge and rise in plasma progesterone. FRA immunoreactivity was unaltered during dioestrus. Oestradiol-treated OVX rats (OVX+E) displayed marked reduction in FRA/TH-ir neurones in LC compared to oil-treated OVX rats. Accordingly, oestradiol superfusion significantly reduced the spontaneous firing rate of LC neurones in slices from OVX rats. Compared to OVX+E, oestradiol-treated rats injected with progesterone at 08.00 h (OVX+EP) exhibited higher number of FRA/TH-ir neurones in the LC at 10.00 h and 16.00 h, and great amplification of the LH surge. Bath application of progesterone significantly increased the spontaneous firing rate of OVX+E LC neurones. Our data suggest that ovarian steroids may physiologically modulate the activity of LC neurones in females, with possible implications for LH secretion. Moreover, oestradiol and progesterone appear to exert opposite and complementary effects (i.e. whereas oestradiol inhibits, progesterone, after oestradiol priming, stimulates LC activity).
Resumo:
Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The effects of ATP, ADP, and adenosine in the processes of platelet aggregation, vasodilatation, and coronary flow have been known for many years. The sequential hydrolysis of ATP to adenosine by soluble nucleotidases constitutes the main system for rapid inactivation of circulating adenine nucleotides. Thyroid disorders affect a number of biological factors including adenosine levels in different fractions. Then, we intend to investigate if the soluble nucleotidases responsible for the ATP, ADP, and AMP hydrolysis are affected by variations in the thyroid hormone levels in blood serum from adult rats. Hyperthyroidism was induced by daily intraperitoneal injections of L-thyroxine (T4) (2.5 and 10.0 mu g/100 g body weight, respectively) for 7 or 14 days. Hypothyroidism was induced by thyroidectomy and methimazole (0.05%) added to their drinking water during 7 or 14 days. The treatments efficacy was confirmed by determination of hemodynamic parameters and cardiac hypertrophy evaluation. T4 treatment predominantly inhibited, and hypothyroidism (14 days after thyroidectomy) predominantly increased the ATP, ADP, and AMP hydrolysis in rat blood serum. These results suggest that both excess and deficiency of thyroid hormones can modulate the ATP diphosphohydrolase and 5`-nucleotidase activities in rat blood serum and consequently modulate the effects mediated by these enzymes and their products in vascular system. (C) 2010 International Union of Biochemistry and Molecular Biology, Inc.
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.
Resumo:
Female sex hormones (FSHs) exert profound regulatory effects on the course of lung inflammation due to allergic and non-allergic immune responses. As pollution is one of the pivotal factors to induce lung dysfunction, in this study we investigated the modulatory role of FSHs on lung inflammation after a formaldehyde (FA) exposure. For this purpose, lung and systemic inflammatory responses were evaluated in terms of leukocytes countings in bronchoalveolar lavage (BAL), peripheral blood and bone marrow lavage from 7-day ovariectomized (OVx) and Sham-OVx rats subjected to FA inhalation for 3 consecutive days. The hypothesized link between effects of FSHs on expression of adhesion molecules and mast cells degranulation was also studied. Once exposed to FA, Sham-OVx rats increased the number of total cells recovered in BAL and of leukocytes in peripheral blood, and decreased the counts in bone marrow. By contrast, in OVx rats upon FA exposure there was a reduction of the total cells counts in BAL and of blood leukocytes: lung expressions of ICAM-1 and Mac-1 were depressed, but the number of bone marrow cells did not vary. Estradiol treatment of OVx rats increased the total cells in BAL and decreased the number of blood leukocytes, whereas the number of bone marrow cell remained unaltered. Progesterone treatment, in turn increased the total cells in BAL and blood leukocytes, but decreased the number of bone marrow cells. OVx rats exposed to FA developed tracheal hyperresponsiveness to methacholine (MCh). A similarly altered response was found between the tracheal segments of Sham-OVx rats after FA exposure and that found in tracheae of naive rats. Estradiol treatment prevented FA-induced tracheal hyperresponsiveness to MCh whereas progesterone was ineffective in this regard. In addition, OVx rats upon FA exposure significantly increased both, the ability of mast cell degranulation and serum corticosterone levels. In conclusion, it was found that FSHs act by distinct control mechanisms on FA-induced lung inflammation and tracheal hyperresponsiveness, since at low circulating levels of FSHs (such as those after OVx) there is some resistance to the development of a lung inflammatory response, but the cholinergic tracheal responsiveness is exacerbated. Our data also help to understand the involvement of FSHs on mast cells activity after pollutants exposure and add information regarding the role of FSHs on the mechanisms related to endothelium-leukocyte interactions. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Thyroid hormones exert most of their physiological effects through two thyroid hormone receptor (TR) subtypes, TR alpha and TR beta, which associate with many transcriptional coregulators to mediate activation or repression of target genes. The search for selective TR beta ligands has been stimulated by the finding that several pharmacological actions mediated by TR beta might be beneficial in medical conditions such as obesity, hypercholesterolemia and diabetes. Here, we present a new methodology which employs surface plasmon resonance to investigate the interactions between TR beta ligand binding domain (LBD) complexes and peptides derived from the nuclear receptor interaction motifs of two of its coregulators, SRC2 and DAX1. The effect of several TR beta ligands, including the TR beta selective agonist GC-I and the TR beta selective antagonist NH-3, were investigated. We also determined the kinetic rate constants for the interaction of TR beta-T3 with both coregulators, and accessed the thermodynamic parameters for the interaction with DAX1. Our findings Suggest that flexibility plays an important role in the interaction between the receptor and its coregulators. and point out important aspects of experimental design that should be addressed when using TR beta LBD and its agonists. Furthermore, the methodology described here may be useful for the identification of new TR beta ligands. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In the present investigation, we have evaluated the antileishmanial and antitrypanosomal activity of methanolic crude extracts obtained from eight species of cnidarians and of a modified steroid isolated from the octocoral Carijoa riisei. The antileishmanial activity of cnidarians crude extracts showed 50% inhibitory concentration ( IC50) values in the concentration range between 2.8 and 93.3 mu g/mL. Trypomastigotes of Trypanosoma cruzi were less susceptible to the crude extracts, with IC50 values in the concentration range between 40.9 and 117.9 mu g/mL. The steroid (18-acetoxipregna-1,4,20-trien-3-one) displayed a strong antileishmanial activity, with an IC50 value of 5.5 mu g/mL against promastigotes and 16.88 mu g/mL against intracellular amastigotes. The steroid also displayed mammalian cytotoxicity (IC50 of 10.6 mu g/mL), but no hemolytic activity was observed at the highest concentration of 12.5 mu g/mL. The antileishmanial effect of the steroid in macrophages suggested other mechanism than macrophage activation, as no upregulation of nitric oxide was observed. The antitrypanosomal activity of the steroid resulted in an IC50 value of 50.5 mu g/mL. These results indicate the potential of cnidarian natural compounds as antileishmanial drug candidates.