3 resultados para Spring Peeper
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We investigated the production of a hepatotoxic, cyclic heptapeptide, microcystin, by a filamentous branched cyanobacterium belonging to the order Stigonematales, genus Fischerella. The freshwater Fischerella sp. strain CENA161 was isolated from spring water in a small concrete dam in Piracicaba, Sao Paulo State, Brazil, and identified by combining a morphological description with 16S rRNA gene sequencing and phylogenetic analysis. Microcystin (MCYST) analysis performed using an ELISA assay on cultured cells gave positive results. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis detected 33.6 mu g MCYST-LR per gram dry weight of cyanobacterial cells. Microcystin profile revealed by quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS/MS) analysis confirmed the production of MCYST-LR. Furthermore, genomic DNA was analyzed by PCR for sequences similar to the ketosynthase (KS) domain of the type I polyketide synthase gene, which is involved in microcystin biosynthesis. This revealed the presence of a KS nucleotide fragment similar to the mcyD and ndaD genes of the microcystin and nodularin synthetase complexes. Phylogenetic analysis grouped the Fischerella KS sequence together with mcyD sequences of the three known microcystin synthetase operon (Microcystis, Planktothrix and Anabaena) and ndaD of the nodularin synthetase operon, with 100% bootstrap support. Our findings demonstrate that Fischerella sp. CENA161 produces MYCST-LR and for the first time identify a nucleotide sequence putatively involved in microcystin synthesis in this genus. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction (XRD) reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H (c) = 12.5 kOe and (BH)(max) = 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains (diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. The microstructure is discussed in terms of a calculation by Skomski and Coey. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a poorly coupled sample. The FORC diagrams show two strong peaks for both the poorly coupled sample and for the well-coupled material. In both cases, the localization of the FORC probability suggests magnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure.
Resumo:
This paper pursues the study carried out in [ 10], focusing on the codimension one Hopf bifurcations in the hexagonal Watt governor system. Here are studied Hopf bifurcations of codimensions two, three and four and the pertinent Lyapunov stability coefficients and bifurcation diagrams. This allows to determine the number, types and positions of bifurcating small amplitude periodic orbits. As a consequence it is found an open region in the parameter space where two attracting periodic orbits coexist with an attracting equilibrium point.