6 resultados para Sport training

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3 beta and eIF2B epsilon mRNA levels and Akt, GSK-3 beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacurau AV, Jardim MA, Ferreira JC, Bechara LR, Bueno CR Jr, Alba-Loureiro TC, Negrao CE, Casarini DE, Curi R, Ramires PR, Moriscot AS, Brum PC. Sympathetic hyperactivity differentially affects skeletal muscle mass in developing heart failure: role of exercise training. J Appl Physiol 106: 1631-1640, 2009. First published January 29, 2009; doi:10.1152/japplphysiol.91067.2008.-Sympathetic hyperactivity (SH) is a hallmark of heart failure (HF), and several lines of evidence suggest that SH contributes to HF-induced skeletal myopathy. However, little is known about the influence of SH on skeletal muscle morphology and metabolism in a setting of developing HF, taking into consideration muscles with different fiber compositions. The contribution of SH on exercise tolerance and skeletal muscle morphology and biochemistry was investigated in 3- and 7-mo-old mice lacking both alpha(2A)- and alpha(2C)-adrenergic receptor subtypes (alpha(2A)/alpha(2C)ARKO mice) that present SH with evidence of HF by 7 mo. To verify whether exercise training (ET) would prevent skeletal muscle myopathy in advanced-stage HF, alpha(2A)/alpha(2C)ARKO mice were exercised from 5 to 7 mo of age. At 3 mo, alpha(2A)/alpha(2C)ARKO mice showed no signs of HF and preserved exercise tolerance and muscular norepinephrine with no changes in soleus morphology. In contrast, plantaris muscle of alpha(2A)/alpha(2C)ARKO mice displayed hypertrophy and fiber type shift (IIA -> IIX) paralleled by capillary rarefaction, increased hexokinase activity, and oxidative stress. At 7 mo, alpha(2A)/alpha(2C)ARKO mice displayed exercise intolerance and increased muscular norepinephrine, muscular atrophy, capillary rarefaction, and increased oxidative stress. ET reestablished alpha(2A)/alpha(2C)ARKO mouse exercise tolerance to 7-mo-old wild-type levels and prevented muscular atrophy and capillary rarefaction associated with reduced oxidative stress. Collectively, these data provide direct evidence that SH is a major factor contributing to skeletal muscle morphological changes in a setting of developing HF. ET prevented skeletal muscle myopathy in alpha(2A)/alpha(2C)ARKO mice, which highlights its importance as a therapeutic tool for HF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin 6 (IL-6), a cytokine that exerts inhibitory effects on several pro-inflammatory cytokines. Although dynamic chronic resistance training has been shown to produce the known ""repeated bout effect"", which abolishes the acute muscle damage, performing of high-intensity resistance training has been regarded highly advisable, at least from the hypertrophy perspective. On the other hand, a more therapeutic, ""non-damaging"" resistance training program, mainly composed of concentric forces, low frequency/low volume of training, and the same exercise, could theoretically benefit the muscle when the main issue is to avoid muscle inflammation (as in the treatment of several ""low-grade"" inflammatory diseases) because the acute effect of each resistance exercise session could be diminished/avoided, at the same time that the muscle is still being overloaded in a concentric manner. However, the benefits of such ""less demanding"" resistance training schedule on the muscle inflammatory profile have never been investigated. Therefore, we assessed the protein expression of IL-6, TNF-alpha, IL-10, IL-10/TNF-alpha ratio, and HSP70 levels and mRNA expression of SCF(beta-TrCP), IL-15, and TLR-4 in the skeletal muscle of rats submitted to resistance training. Briefly, animals were randomly assigned to either a control group (S, n = 8) or a resistance-trained group (T, n = 7). Trained rats were exercised over a duration of 12 weeks (two times per day, two times per week). Detection of IL-6, TNF-alpha, IL-10, and HSP70 protein expression was carried out by western blotting and SCF(beta-TrCP) (SKP Cullin F-Box Protein Ligases), a class of enzymes involved in the ubiquitination of protein substrates to proteasomal degradation, IL-15, and TLR-4 by RT-PCR. Our results show a decreased expression of TNF-alpha and TLR4 mRNA (40 and 60%, respectively; p < 0.05) in the plantar muscle from trained, when compared with control rats. In conclusion, exercise training induced decreased TNF-alpha and TLR-4 expressions, resulting in a modified IL-10/TNF-alpha ratio in the skeletal muscle. These data show that, in healthy rats, 12-week resistance training, predominantly composed of concentric stimuli and low frequency/low volume schedule, down regulates skeletal muscle production of cytokines involved in the onset, maintenance, and regulation of inXammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1x), trained 3 days per week (TRE3x) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3x. PYC enhancement was even higher in TRE5x (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to beta-cell surviving rather than insulin secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prestes, J, Frollini, AB, De Lima, C, Donatto, FF, Foschini, D, de Marqueti, RC, Figueira Jr, A, and Fleck, SJ. Comparison between linear and daily undulating periodized resistance training to increase strength. J Strength Cond Res 23(9): 2437-2442, 2009-To determine the most effective periodization model for strength and hypertrophy is an important step for strength and conditioning professionals. The aim of this study was to compare the effects of linear (LP) and daily undulating periodized (DUP) resistance training on body composition and maximal strength levels. Forty men aged 21.5 +/- 8.3 and with a minimum 1-year strength training experience were assigned to an LP (n = 20) or DUP group (n = 20). Subjects were tested for maximal strength in bench press, leg press 45 degrees, and arm curl (1 repetition maximum [RM]) at baseline (T1), after 8 weeks (T2), and after 12 weeks of training (T3). Increases of 18.2 and 25.08% in bench press 1 RM were observed for LP and DUP groups in T3 compared with T1, respectively (p <= 0.05). In leg press 45 degrees, LP group exhibited an increase of 24.71% and DUP of 40.61% at T3 compared with T1. Additionally, DUP showed an increase of 12.23% at T2 compared with T1 and 25.48% at T3 compared with T2. For the arm curl exercise, LP group increased 14.15% and DUP 23.53% at T3 when compared with T1. An increase of 20% was also found at T2 when compared with T1, for DUP. Although the DUP group increased strength the most in all exercises, no statistical differences were found between groups. In conclusion, undulating periodized strength training induced higher increases in maximal strength than the linear model in strength-trained men. For maximizing strength increases, daily intensity and volume variations were more effective than weekly variations.