18 resultados para SnS thin films
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Nanostrucured europium oxide and hydroxide films were obtained by pulsed Nd:YAG (532 nm) laser ablation of a europium metallic target, in the presence of a 1 mbar helium buffer atmosphere. Both the produced film and the ambient plasma were characterized. The plasma was monitored by an electrostatic probe, for plume expansion in vacuum or in the presence of the buffer atmosphere. The time evolution of the ion saturation current was obtained for several probe to substrate distances. The results show the splitting of the plume into two velocity groups, being the lower velocity profile associated with metal cluster formation within the plume. The films were obtained in the presence of helium atmosphere, for several target-to-substrate distances. They were analyzed by Rutherford backscattering spectrometry, x-ray diffraction, and atomic force microscopy, for as-deposited and 600 degrees C treated-in-air samples. The results show that the as-deposited samples are amorphous and have chemical composition compatible with europium hydroxide. The thermally treated samples show x-ray diffraction peaks of Eu(2)O(3), with chemical composition showing excess oxygen. Film nanostructuring was shown to be strongly correlated with cluster formation, as shown by velocity splitting in probe current versus time plots. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3457784]
Resumo:
Nanocrystalline ZnO thin films prepared by the sol-gel dip-coating technique were characterized by grazing incidence X-ray diffraction (GIXD), atomic force microscopy (AFM), X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS). The structures of several thin films subjected to (i) isochronous annealing at 350, 450 and 550 degrees C, and (ii) isothermal annealing at 450 degrees C during different time periods, were characterized. The studied thin films are composed of ZnO nanocrystals as revealed by analysing several GIXD patterns, from which their average sizes were determined. Thin film thickness and roughness were determined from quantitative analyses of AFM images and XR patterns. The analysis of XR patterns also yielded the average density of the studied films. Our GISAXS study indicates that the studied ZnO thin films contain nanopores with an ellipsoidal shape, and flattened along the direction normal to the substrate surface. The thin film annealed at the highest temperature, T = 550 degrees C, exhibits higher density and lower thickness and nanoporosity volume fraction, than those annealed at 350 and 450 degrees C. These results indicate that thermal annealing at the highest temperature (550 degrees C) induces a noticeable compaction effect on the structure of the studied thin films. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
This paper presents the characterization of single-mode waveguides for 980 and 1550 nm wavelengths. High quality planar waveguide structure was fabricated from Y(1-x)Er(x)Al(3)(BO(3))(4) multilayer thin films with x = 0.02, 0.05, 0.1, 0.3, and 0.5, prepared through the polymeric precursor and sol-gel methods using spin-coating. The propagation losses of the planar waveguides varying from 0.63 to 0.88 dB/cm were measured at 632.8 and 1550 nm. The photoluminescence spectra and radiative lifetimes of the Er(3+) (4)I(13/2) energy level were measured in waveguiding geometry. For most samples the photoluminescence decay was single exponential with lifetimes in between 640 mu s and 200 mu s, depending on the erbium concentration and synthesis method. These results indicate that Er doped YAl(3)(BO(3))(4) compounds are promising for low loss waveguides. (C) 2009 Elsevier B.V. All fights reserved.
Resumo:
We report a pump-probe study of the two-photon induced reflectivity changes in bis (n-butylimido) perylene thin films. To enhance the two-photon excitation we deposited bis (n-butylimido) perylene films on top of gold nanoislands. The observed transient response in the reflectivity spectrum of bis (n-butylimido) perylene is due to a depletion of the molecule`s ground state and excited state absorption.
Resumo:
A detailed investigation was made into the origin of photoluminescence in an alternate multilayer system of SrZrO(3) (SZO) and SrTiO(3) (STO) thin films. XRD and room-temperature PL studies revealed a high consistency with respect to improved crystallization at elevated temperatures. The photoluminescence behaviour of SZO/STO multilayered system consists in the superposition of independent photoluminescence emissions of both STO and SZO films. Based on the present results and on previous experimental and theoretical data, we propose that the origin of the photoluminescence emission results from structural disorder generated by the presence of distortions in the ideal constituent clusters of these materials. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thin Cd(2)Nb(2)O(7) films were grown on single-crystal p-type SiO(2)/Si substrates by the metallo-organic decomposition (MOD) technique. The films were investigated by X-ray diffraction, X-ray energy-dispersive spectroscopy, and field emission scanning electron microscopy, and showed a single phase (cubic pyrochlore), a crack-free spherical grain structure, and nanoparticles with a mean size of about 68 nm. A Cauchy model was also used in order to obtain the thickness and index of refraction of the stack layers (transparent layer/SiO(2)/Si) by spectroscopic ellipsometry (SE). The dielectric constant (K) of the films was calculated to be about 25 from the capacitance-voltage (C-V) measurements. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis of Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using D-sorbitol as complexant agent. The chemical reactions were described. Y(0.)9Er(0.1)Al(3)(BO(3))(4) composition presents good thermal stability with regard to crystallization. The Y(0.9)Er(0.1)Al(3)(BO(3))(4) crystallized phase can be obtained at 1,150 degrees C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to similar to 800 nm) at 740 degrees C during 2 h onto silica substrates by spin coating with a gyrset technology.
Resumo:
Vitreous samples containing high concentrations of WO3 (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO3. These amorphous thin films of about 4 mu m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO3 microcrystals in the amorphous phase. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Photoexpansion and photobleaching effects have been observed in amorphous GeS(2) + Ga(2)O(3) (GGSO) thin films, when their surfaces were exposed to UV light. The photoinduced changes on the surface of the samples are indications that the structure has been changed as a result of photoexcitation. In this paper, micro-Raman, energy dispersive X-ray analysis (EDX) and backscattering electrons (BSE) microscopy were the techniques used to identify the origin of these effects. Raman spectra revealed that these phenomena are a consequence of the Ge-S bonds` breakdown and the formation of new Ge-O bonds, with an increase of the modes associated with Ge-O-Ge bonds and mixed oxysulphide tetrahedral units (S-Ge-O). The chemical composition measured by EDX and BSE microscopy images indicated that the irradiated area is oxygen rich. So, the present paper provides fundamental insights into the influence of the oxygen within the glass matrix on the considered photoinduced effects. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work. XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry, and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC) 2.8: 23: 1 (XGT) and 1.91.91 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more alpha-D-Xyl branches due to more beta-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Thin films of MnO(2) nanoparticles were grown using the layer-by-layer method with poly (diallyldimetylammonium) as the intercalated layer. The film growth was followed by UV-vis, electrochemical quartz crystal microbalance (EQCM), and atomic force microscopy. Linear growth due to electrostatic immobilization of layers was observed up to 30 bilayers, but electrical connectivity was maintained only for 12 MnO(2)/PPDA bilayers. The electrochemical characterization of this film in 1-butyl-2,3-dimethyl-imidazolium (BMMI) bis(trifluoromethanesulfonyl)imide (TFSI) (BMMITFSI) with and without addition of a lithium salt indicated a higher electrochemical response of the nanostructured electrode in the lithium-containing electrolyte. On the basis of EQCM experiments, it was possible to confirm that the charge compensation process is achieved mainly by the TFSI anion at short times (<2 s) and by BMMI and lithium cations at longer times. The fact that large ions like TFSI and BMMI participate in the electroneutrality is attributed to the redox reaction that occurs at the superficial sites and to the high concentration of these species compared to that of lithium cations.
Resumo:
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Lead iodide thin films were fabricated using the spray pyrolysis technique. Milli-Q water and N.N-dimethylformamide were used as solvents under varying deposition conditions. Films as thick as 60 mu m were obtained. The optical and structural properties of the samples were investigated using Photoluminescence, Raman scattering, X-ray diffraction, and Scanning electron microscopy. In addition, the study included also the electronic properties which were investigated by measuring the dark conductivity as a function of temperature. The deposition technique seems to be promising for the development of thick films to be used in medical imaging.