14 resultados para Single-crystal electrode
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Erbium-doped single crystal fibers, with low phonon energy and fairly high absorption and emission cross sections are interesting laser active media, for compact, near-infrared and/or upconversion lasers. In this work, high optical quality Er3+-doped CaNb2O6 and CaTa2O6 single crystal fibers were successfully grown by the versatile laser-heated pedestal growth technique, and characterized from the structural and spectroscopic points of view. The results indicate that these crystal fiber compositions, which had not been explored so far, offer potential applications, not only as laser active media, but also in other optical devices. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
CaNb(2)O(6) single crystal fibers were grown by the laser-heated pedestal growth technique, directly from the starting reagents. Optically transparent fibers were obtained in the form of rods with elliptical cross-section, free from cracks, impurities, and secondary phases, with an average diameter of 0.4 mm and about 20 mm of length. The fibers grew within the orthorhombic Pbcn columbite structure, with the growth axis nearly parallel to the crystallographic a-direction. The parameters b and c were parallel to the shorter and larger ellipsis axes. A special setup using a microscope was developed to obtain the far-infrared reflectivity spectra of these micrometer-sized fibers, allowing the identification and assignment of 34 of the 38 polar phonons foreseen for the material. From these phonons, the intrinsic dielectric constant ( of 185 THz) could be estimated, showing the potential of the material for applications in microwave circuitry. These results, along with previous polarized Raman data (Cryst. Growth Des. 2010, 10, 1569), allow us to present a comprehensive set of optical phonon modes and to discuss the potential use of designed CaNb(2)O(6) microcrystals in compact optical devices.
Resumo:
Cadmium chloride complex of 1-furoyl-3-cyclohexylthiourea (CyTu) was prepared and characterized by elemental analysis, IR, and Raman spectroscopy. The structure of the complex was determined by single crystal X-ray methods (space group Bbab, a = 20.918(1), b = 23.532(1), c = 23.571(1) angstrom, = = , Z = 8). Each cadmium has distorted octahedral geometry, coordinated by two chlorides and the thiocarbonyl sulfurs from four CyTu molecules. All the spectroscopic data are consistent with coordination of CyTu by sulfur to cadmium.
Resumo:
Platinum stepped surfaces vicinal to the (1 1 0) crystallographic pole have been investigated voltammetrically in 0.1 M HClO(4) and 0.1 M H(2)SO(4) solutions. Changes in the voltammetric profile with the step density suggest the existence of two types of surface sites, that has been ascribed to linear and bidimensional domains. This result indicates the existence of important restructuring processes that separate the real surface distribution from the nominal one. The electronic properties of the surfaces have been characterized with the CO charge displacement method and the potential of zero total charge has been calculated as a function of the step density. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the presented work, the evaluation of the influence of acetic acid in the electrochemical environment on the ethanol electro-oxidation reaction on a polycrystalline platinum electrode is presented for the first time. Using cyclic voltammetry. chronoamperometry and in situ Fourier Transformed IR spectroscopy (FTIR) it was demonstrated that an inhibition of the ethanol oxidation reaction occurs for bulk acetic acid concentrations of the order 0.1 mu mol L(-1) -5 mmol L(-1). This inhibition effect is related to the decrease of CO(2) and acetaldehyde production as confirmed by spectroscopic results. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The development of more efficient anti-tuberculosis drugs is of interest. Three oxovanadium(IV) and three cis-dioxovanadium(V) complexes with thiosemicarbazone derivatives bearing moieties with different lipophilicity have been prepared and had their inhibitory activity against Mycobacterium tuberculosis H(37)Rv ATCC 27294 evaluated. The analytical methods used by the complexes` characterization included IR, EPR, (1)H, (13)C and (51)V NMR spectroscopies, elemental analysis, cyclic voltammetry, magnetic susceptibility measurement and single crystal X-ray diffractometry. [VO(acac)(aptsc)], [VO(acac)(apmtsc)] and [VO(acac)(apptsc)] (acac = acetylacetonate; Haptsc = 2-acetylpyridinethiosemicarbazone; Hapmtsc = 2-acetylpyridine-N(4)-methyl-thiosemicarbazone and Happtsc = 2-acetylpyridine-N(4)-phenyl-thiosemicarbazone) are paramagnetic and their EPR spectra are consistent with the monoanionic N,N,S-tridentate coordination of the thiosemicarbazone ligands, resulting in octahedral structures of rhombic symmetry and with the oxidation state +IV for the vanadium atom. As result of oxidation of the vanadium(IV) complexes above, the diamagnetic cis-dioxovanadium(V) complexes [VO(2)(aptsc)[, [VO(2)(apmtsc)[ and [VO(2)(apptsc)] are formed. Their (1)H, (13)C and (51)V NMR spectra were acquired and support a distorted square pyramidal geometry for them, in accord with the solid state X-ray structures determined for [VO(2)(aptsc)] and [VO(2)(apmtsc)]. In general, the vanadium compounds show comparable or larger anti-M. tuberculosis activities than the free thiosemicarbazone ligands, with MIC values within 62.5-1.56 (mu g/mL). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The alkaline earth tricyanomethanides Mg(tcm)(2) center dot 2H(2)O, Ca(tcm)(2), Sr(tcm)(2) - H2O and Ba(tcm)(2) center dot 2H(2)O were prepared from aqueous solutions of the respective chlorides and silver tricyanomethanide. Their IR spectra and thermal behavior are described. The crystal structures of Ca(tcm)(2) and Ba(tcm)(2) center dot 2H(2)O were determined by single crystal X-ray diffraction. The structure of Ca(tcm)(2) is of the type found for several transition metal tricyanomethanides [1], containing two independent interpenetrating networks. Ba(tcm)(2) center dot 2H(2)O has a unique crystal structure corresponding to a three-dimensional coordination polymer with nine fold coordinated Ba atoms connected by water molecules and tricyanomethanide anions.
Resumo:
Oxygenated xanthones have been extensively investigated over the years, but there are few reports concerning their crystal structure. Our chemical investigations of Brazilian plants resulted in the isolation of four natural products named 1-hydroxyxanthone (I), 1-hydroxy-7-methoxyxanthone (II), 1,5-dihydroxy-3-methoxyxanthone (III), and 1,7-dihydroxy-3,8-dimethoxyxanthone (IV). The structures of these compounds were established on the basis of single crystal X-ray diffraction. The xanthone nucleus conformation is essentially planar with the substituents adopting the orientations less sterically hindered. In addition, classical intermolecular hydrogen bonds (O-H center dot center dot center dot O) present in III and IV give rise to infinite ribbons. However, the xanthone I does not present any intermolecular hydrogen bonds, meanwhile the xanthone II presents only a non-classical one (C-H center dot center dot center dot O). The crystal packing of all xanthone structures is also stabilized by pi-pi interactions. The fingerprint plots, derived from the Hirshfeld surfaces, exhibited significant features of each crystal structures.
Resumo:
We present electron-microprobe and single-crystal X-ray-diffraction data for a microlite-group mineral with a formula near NaCaTa(2)O(6)F from the Morro Redondo mine, Coronel Murta, Minas Gerais, Brazil. On the basis of these data, the formula is A(Na(0.88)Ca(0.88)Pb(0.02)square(0.22))(Sigma 2.00) (B)(Ta(1.70)Nb(0.14)Si(0.12)As(0.04))(Sigma 2.00) (X)[(O(5.75)(OH)(0.25)](Sigma 6.00) (Y)(F(0.73)square(0.27))(Sigma 1.00). According to the new nomenclature for the pyrochlore-supergroup minerals, it is intermediate between fluornatromicrolite and "" fluorcalciomicrolite"". The crystal structure, F (d3) over barm, a = 10.4396(12) angstrom, has been refined to an R(1) value of 0.0258 (wR(2) = 0.0715) for 107 reflections (MoK alpha radiation). There is a scarcity of crystal-chemical data for pyrochlore-supergroup minerals in the literature. A compilation of these data is presented here.
Resumo:
The conformational features of three 2-sulphur-substituted cyclohexanone derivatives, which differ in the number of sulphur-bound oxygen atoms, i.e. zero (I), one (II) and two (III), were investigated by single crystal X-ray crystallography and geometry optimized structures determined using Hartree-Fock method. In each of (I)-(III) an intramolecular S center dot center dot center dot O(carbonyl) interaction is found with the magnitude correlated with the oxidation state of the sulphur atom, i.e. 2.838(3) angstrom in (I) to 2.924(2) angstrom in (II) to 3.0973(18) angstrom in (III). There is an inverse relationship between the strength of this interaction and the magnitude of the carbonyl bond. The supramolecular aggregation patterns are primarily determined by C-H center dot center dot center dot O contacts and are similarly influenced by the number of oxygen atoms in the molecular structures. Thus, a supramolecular chain is found in the crystal structure of (I). With an additional oxygen atom available to participate in C-H center dot center dot center dot O interactions, as in (II), a two-dimensional array is found. Finally, a three-dimensional network is found for (III). Despite there being differences in conformations between the experimental structures and those calculated in the gas-phase, the S center dot center dot center dot O interactions persist. The presence of intermolecular C-H center dot center dot center dot O interactions involving the cyclohexanone-carbonyl group in the solid-state, disrupts the stabilising intramolecular C-H center dot center dot center dot O interaction in the energetically-favoured conformation. (I): C(12)H(13)NO(3)S, triclinic space group P (1) over bar with a = 5.392(3) angstrom b = 10.731(6) angstrom, c = 11.075(6) angstrom, alpha = 113.424(4)degrees, beta = 94.167(9)degrees, gamma = 98.444(6)degrees, V = 575.5(6) angstrom(3), Z = 2, R(1) = 0.052; (II): C(12)H(13)NO(4)S, monoclinic P2(1)/n, a = 7.3506(15) angstrom, b = 6.7814(14) angstrom, c = 23.479(5) angstrom, beta = 92.94(3)degrees, V = 1168.8(4) angstrom(3), Z = 4, R(1) = 0.046; (III): C(12)H(13)NO(5)S, monoclinic P2(1)/c, a = 5.5491(11) angstrom, b = 24.146(3) angstrom, c = 11.124(3) angstrom, beta = 114.590(10)degrees, V = 1355.3(5) angstrom(3), Z = 4, R(1) = 0.051.
Resumo:
The electrooxidation of small organic molecules on platinum surfaces usually involves different structure-dependent steps that include adsorption and desorption of various species and multiple reaction pathways. Because temperature plays a decisive role on each individual step, understanding its global influence on the reaction mechanism is often a difficult task, especially when the system is studied under far from equilibrium conditions in the presence of kinetic instabilities. Aiming at contributing to unravel this problem, herein, we report an experimental study of the role played by temperature on the electrooxidation of formic acid on a Pt(100) electrode. The system was investigated under both close and far from equilibrium conditions, and apparent activation energies were estimated using different strategies. Overall, comparable activation energies were estimated under oscillatory and quasi-stationary conditions, at high potentials. At low potentials, the poisoning process associated with the formic acid dehydration step presented a negligible dependence with temperature and, therefore, zero activation energy. On the basis of our experimental findings, we suggest that formic acid dehydration is the main, but maybe not the unique, step that differentiates the temperature dependence of the oscillatory electrooxidation of formic acid on Pt(100) with that on polycrystalline platinum.
Resumo:
The synthesis and characterization of some pyrazoline compounds of 1,3-diketones with hydrazine derivatives, namely, 1-(S-benzyldithiocarbazate)-3-methyl-5-phenyl-5-hydroxypyrazoline (1); 1-(2-thiophenecarboxylic)-3-methyl-5-phenyl-5-hydroxypyrazoline (2); 1-(2-thiophenecarboxylic)-3,5-dimethyl-5-hydroxypyrazoline (3); 1-(S-benzyldithiocarbazato)-3-methyl-5-phenylpyrazole (4); 1-(2-thiophenecarboxylic)-3-methyl-5-phenylpyrazole (5) and 1-(S-benzyldithiocarbazate)-3,5-dimethylpyrazole (6) are reported. Studies by IR, ((1)H, (13)C)-NMR spectroscopies and single crystal X-ray diffraction revealed that compounds (1)(,) (2) and (3) are formed as pyrazoline, whereas (4) and (5) are formed as pyrazole derivatives only under acidic conditions. Compound (1) crystallizes in orthorhombic P2(1)2(1)2(1), a = 6.38960(10) angstrom, b = 12.9176(3) angstrom, c = 21.2552(5) angstrom, (2) crystallizes in monoclinic, P2(1)/n, a = 11.3617(2) angstrom, b = 8.4988(2) angstrom, c = 92.8900(10)angstrom and beta = 92.8900(5)degrees, (3) crystallizes in monoclinic, C2/c, a = 15.9500(5) angstrom, b = 9.3766(3) angstrom, c = 16.6910(5)angstrom and beta = 113.825(2)degrees, (4) crystallizes in monoclinic, P2(1)/c, a = 15.228(4) angstrom, b = 5.5714(13) angstrom, c = 19.956(5)angstrom and beta = 91.575(7)degrees and (6) crystallizes in orthorhombic, P2(1)2(1)2(1), a = 5.3920(2) angstrom, b = 11.2074(5) angstrom, c = 21.885(1)angstrom . The (3) derivative represents the first pyrazoline compound prepared from 2,4-pentanedione and characterized crystallographically.
Resumo:
The oscillatory electro-oxidation of methanol was studied by means of in situ infrared (IR) spectroscopy in the attenuated total reflection (ATR) configuration using a platinum film on a Si prism as working electrode. The surface-enhanced infrared absorption (SEIRA) effect considerably improves the spectroscopic resolution, allowing at following the coverage of some adsorbing species during the galvanostatic oscillations. Carbon monoxide was the main adsorbed specie observed in the induction period and within the oscillatory regime. The system was investigated at two distinct time-scales and its dynamics characterized accordingly. During the induction period the main transformation observed as the system move through the phase space towards the oscillatory region was the decrease of the coverage of adsorbed carbon, coupled to the increase of the electrode potential. Similar transition characterizes the evolution within the oscillatory region, but at a considerably slower rate. Experiments with higher time resolution revealed that the electrode potential oscillates in-phase with the frequency of the linearly adsorbed CO vibration and that the amount of adsorbed CO oscillates with small amplitude. Adsorbed formate was found to play, if any, a very small role. Results are discussed and compared with other systems. (C) 2010 Elsevier B.V. All rights reserved.