16 resultados para Servetto, Alicia
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We analyzed Brazil's efforts in reducing child mortality, improving maternal and child health, and reducing socioeconomic and regional inequalities from 1990 through 2007. We compiled and reanalyzed data from several sources, including vital statistics and population-based surveys. We also explored the roles of broad socioeconomic and demographic changes and the introduction of health sector and other reform measures in explaining the improvements observed. Our findings provide compelling evidence that proactive measures to reduce health disparities accompanied by socioeconomic progress can result in measurable improvements in the health of children and mothers in a relatively short interval. Our analysis of Brazil's successes and remaining challenges to reach and surpass Millennium Development Goals 4 and 5 can provide important lessons for other low- and middle-income countries
Resumo:
Background: Children born small for gestational age (SGA) experience higher rates of morbidity and mortality than those born appropriate for gestational age. In Latin America, identification and optimal management of children born SGA is a critical issue. Leading experts in pediatric endocrinology throughout Latin America established working groups in order to discuss key challenges regarding the evaluation and management of children born SGA and ultimately develop a consensus statement. Discussion: SGA is defined as a birth weight and/or birth length greater than 2 standard deviations (SD) below the population reference mean for gestational age. SGA refers to body size and implies length-weight reference data in a geographical population whose ethnicity is known and specific to this group. Ideally, each country/region within Latin America should establish its own standards and make relevant updates. SGA children should be evaluated with standardized measures by trained personnel every 3 months during year 1 and every 6 months during year 2. Those without catch-up growth within the first 6 months of life need further evaluation, as do children whose weight is <= -2 SD at age 2 years. Growth hormone treatment can begin in SGA children > 2 years with short stature (< -2.0 SD) and a growth velocity < 25th percentile for their age, and should continue until final height (a growth velocity below 2 cm/year or a bone age of > 14 years for girls and > 16 years for boys) is reached. Blood glucose, thyroid function, HbA1c, and insulin-like growth factor-1 (IGF-1) should be monitored once a year. Monitoring insulin changes from baseline and surrogates of insulin sensitivity is essential. Reduced fetal growth followed by excessive postnatal catch-up in height, and particularly in weight, should be closely monitored. In both sexes, gonadal function should be monitored especially during puberty. Summary: Children born SGA should be carefully followed by a multidisciplinary group that includes perinatologists, pediatricians, nutritionists, and pediatric endocrinologists since 10% to 15% will continue to have weight and height deficiency through development and may benefit from growth hormone treatment. Standards/guidelines should be developed on a country/region basis throughout Latin America.
Resumo:
Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
Enhanced mitochondrial biogenesis promoted by eNOS activation is believed to play a central role in the beneficial effects of calorie restriction (CR). Since treatment of mice with dinitrophenol (DNP) promotes health and lifespan benefits similar to those observed in CR, we hypothesized that it could also impact biogenesis. We found that DNP and CR increase citrate synthase activity, PGC-1 alpha, cytochrome c oxidase and mitofusin-2 expression, as well as fasting plasma levels of NO(center dot) products. In addition, eNOS and Akt phosphorylation in skeletal muscle and visceral adipose tissue was activated in fasting CR and DNP animals. Overall, our results indicate that systemic mild uncoupling activates eNOS and Akt-dependent pathways leading to mitochondrial biogenesis.
Resumo:
The ubiquitin-proteasome system governs the half-life of most cellular proteins. Calorie restriction (CR) extends the maximum life span of a variety of species and prevents oxidized protein accumulation. We studied the effects of CR on the ubiquitin-proteasome system and protein turnover in aging Saccharomyces cerevisiae. CR increased chronological life span as well as proteasome activity compared to control cells. The levels of protein carbonyls, a marker of protein oxidation, and those of polyubiquitinated proteins were modulated by CR. Controls, but not CR cells, exhibited a significant increase in oxidized proteins. In keeping with decreased proteasome activity, polyubiquitinated proteins were increased in young control cells compared to time-matched CR cells, but were profoundly decreased in aged control cells despite decreased proteasomal activity. This finding is related to a decreased polyubiquitination ability due to the impairment of the ubiquitin-activating enzyme in aged control cells, probably related to a more oxidative microenvironment. CR preserves the ubiquitin-proteasome system activity. Overall, we found that aging and CR modulate many aspects of protein modification and turnover. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Brain mitochondrial ATP-sensitive K+ channel (mito-K-ATP) opening by diazoxide protects against ischemic damage and excitotoxic cell death. Here we studied the redox properties of brain mito-K-ATP. Mito-K-ATP activation during excitotoxicity in cultured cerebellar granule neurons prevented the accumulation of reactive oxygen species (ROS) and cell death. Furthermore, mito-K-ATP activation in isolated brain mitochondria significantly prevented H2O2 release by these organelles but did not change Ca2+ accumulation capacity. Interestingly, the activity of mito-K-ATP was highly dependent on redox state. The thiol reductant mercaptopropionylglycine prevented mito-K-ATP activity, whereas exogenous ROS activated the channel. In addition, the use of mitochondrial substrates that led to higher levels of endogenous mitochondrial ROS release closely correlated with enhanced K+ transport activity through mito-K-ATP. Altogether, our results indicate that brain mito-K-ATP is a redox-sensitive channel that controls mitochondrial ROS release. (c) 2008 Wiley-Liss, Inc.
Resumo:
We report the comparative proteomic and antivenomic characterization of the venoms of subspecies cascavella and collilineatus of the Brazilian tropical rattlesnake Crotalus durissus. The venom proteomes of C. d. collilineatus and C. d. cascavella comprise proteins in the range of 4-115 kDa belonging to 9 and 8 toxin families, respectively. Collilineatus and cascavella venoms contain 20-25 main toxins belonging to the following protein families: disintegrin, PLA(2), serine proteinase, cysteine-rich secretory protein (CRISP), vascular endothelial growth factor-like (VEGF), L-amino acid oxidase, C-type lectin-like, and snake venom metalloproteinase (SVMP). As judged by reverse-phase HPLC and mass spectrometry, cascavella and collilineatus share about 90% of their venom proteome. However, the relative occurrence of the toxin families departs among the two C. durissus subspecies venoms. The most notable difference is the presence of the myotoxin crotamine in some C. d. collilineatus specimens (averaging 20.8% of the total proteins of pooled venom), which is absent in the venom of C. d. cascavella. On the other hand, the neurotoxic PLA2 crotoxin represents the most abundant protein in both C. durissus venoms, comprising 67.4% of the toxin proteome in C. d. collilineatus and 72.5% in C. d. cascavella. Myotoxic PLA(2)s are also present in the two venoms albeit in different relative concentrations (18.1% in C. d. cascavella vs. 4.6% in C. d. collilineatus). The venom composition accounts for the clinical manifestations caused by C. durissus envenomations: systemic neurotoxicity and myalgic symptoms and coagulation disturbances, frequently accompanied by myoglobinuria and acute renal failure. The overall compositions of C. d. subspecies cascavella and collilineatus venoms closely resemble that of C. d. terrificus, supporting the view that these taxa can be considered geographical variations of the same species. Pooled venom from adult C.d. cascavella and neonate C.d. terrificus lack crotamine, whereas this skeletal muscle cell membrane depolarizing inducing myotoxin accounts for similar to 20% of the total toxins of venom pooled from C.d. collilineatus and C.d. terrificus from Southern Brazil. The possible relevance of the observed venom variability among the tropical rattlesnake subspecies was assessed by antivenomics using anti-crotalic antivenoms produced at Instituto Butantan and Instituto Vital Brazil. The results revealed that both antivenoms exhibit impaired immunoreactivity towards crotamine and display restricted (similar to 60%) recognition of PLA(2) molecules (crotoxin and D49-myotoxins) from C. d. cascavella and C. d. terrificus venoms. This poor reactivity of the antivenoms may be due to a combination of factors: on the one hand, an inappropriate choice of the mixture of venoms for immunization and, on the other hand, the documented low immunogenicity of PLA(2) molecules. C. durissus causes most of the lethal snakebite accidents in Brazil. The implication of the geographic variation of venom composition for the treatment of bites by different C. durissus subspecies populations is discussed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The midbrain rectum structures, dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), are involved in the organization of fear and anxiety states during the exposure to dangerous stimuli. Since opiate withdrawal is associated with increased anxiety in both humans and animals, this study aimed to investigate the possible sensitization of the neural substrates of fear in the midbrain tectum and its influence on the morphine withdrawal-induced anxiety. For the production of drug withdrawal, rats received morphine injections (10 mg/kg; s.c.) twice daily during 10 days. Forty-eight hours after the interruption of the chronic treatment, independent groups were probed in the elevated plus-maze and open-field tests. Additional groups of animals were implanted with a bipolar electrode into the dPAG OF the IC and submitted to the electrical stimulation of these structures for the determination of the freezing and escape thresholds after 48 h of withdrawal. Our results showed that the morphine withdrawal promoted clear-cut levels of anxiety without the somatic signs of opiate withdrawal. Moreover, morphine-withdrawn rats had an increase in the reactivity to the electrical stimulation of the dPAG and the IC. These findings suggest that the increased anxiety induced by morphine withdrawal is associated with the sensitization of the neural substrates of fear in the dPAG and the IC. So, the present results give support to the hypothesis that withdrawal from chronic treatment with morphine leads to fear states possibly engendered by activation of the dPAG and IC, regardless of the production of somatic symptoms. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Disorders of androgen production can occur in all steps of testosterone biosynthesis and secretion carried out by the foetal Leydig cells as well as in the conversion of testosterone into dihydrotestosterone (DHT). The differentiation of Leydig cells from mesenchymal cells is the first walk for testosterone production. In 46,XY disorders of sex development (DSDs) due to Leydig cell hypoplasia, there is a failure in intrauterine and postnatal virilisation due to the paucity of interstitial Leydig cells to secrete testosterone. Enzymatic defects which impair the normal synthesis of testosterone from cholesterol and the conversion of testosterone to its active metabolite DHT are other causes of DSD due to impaired androgen production. Mutations in the genes that codify the enzymes acting in the steps from cholesterol to DHT have been identified in affected patients. Patients with 46,XY DSD secondary to defects in androgen production show a variable phenotype, strongly depending of the specific mutated gene. Often, these conditions are detected at birth due to the ambiguity of external genitalia but, in several patients, the extremely undervirilised genitalia postpone the diagnosis until late childhood or even adulthood. These patients should receive long-term care provided by multidisciplinary teams with experience in this clinical management. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dl1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dl1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Resumo:
BACKGROUND: Treatment recommendations have been developed for management of patients with chronic myeloid leukemia (CML). METHODS: A 30-item multiple-choice questionnaire was administered to 435 hematologists and oncohematologists in 16 Latin American countries. Physicians self-reported their diagnostic, therapeutic, and disease management strategies. RESULTS: Imatinib is available as initial therapy to 92% of physicians, and 42% of physicians have access to both second-generation tyrosine kinase inhibitors. Standard-dose imatinib is the preferred initial therapy for most patients, but 20% would manage a young patient initially with an allogeneic stem cell transplant from a sibling donor, and 10% would only offer hydroxyurea to an elderly patient. Seventy-two percent of responders perform routine cytogenetic analysis for monitoring patients on therapy, and 59% routinely use quantitative polymerase chain reaction. For patients who fail imatinib therapy, 61% would increase the dose of imatinib before considering change to a second-generation tyrosine kinase inhibitor, except for patients aged 60 years, for whom a switch to a second-generation tyrosine kinase inhibitor was the preferred choice. CONCLUSIONS: The answers to this survey provide insight into the management of patients with CML in Latin America. Some deviations from current recommendations were identified. Understanding the treatment patterns of patients with CML in broad population studies is important to identify needs and improve patient care. Cancer 2010;116:4991-5000. (C) 2070 American Cancer Society.
Resumo:
The purpose of this study was to determine whether bone marrow-derived cells can differentiate into myofibroblasts, as defined by alpha-smooth muscle actin (SMA) expression, that arise in the corneal stroma after irregular phototherapeutic keratectomy and whose presence within the cornea is associated with corneal stromal haze. C578L/6J-GFP chimeric mice were generated through bone marrow transplantation from donor mice that expressed enhanced green fluorescent protein (GFP) in a high proportion of their bone marrow-derived cells. Twenty-four GFP chimeric mice underwent haze-generating corneal epithelial scrape followed by irregular phototherapeutic keratectomy (PTK) with an excimer laser in one eye. Mice were euthanized at 2 weeks or 4 weeks after PTK and the treated and control contralateral eyes were removed and cryo-preserved for sectioning for immunocytochemistry. Double immunocytochemistry for GFP and myofibroblast marker alpha-smooth muscle actin (SMA) were performed and the number of SMA+GFP+, SMA+GFP, SMA-GFP+ and SMA GFP cells, as well as the number of DAPI+ cell nuclei, per 400x field of stroma was determined in the central, mid-peripheral and peri-limbal cornea. In this mouse model, there were no SMA+ cells and only a few GFP+ cells detected in unwounded control corneas. No SMA+ cells were detected in the stroma at two weeks after irregular PTK, even though there were numerous GFP+ cells present. At 4 weeks after irregular PTK, all corneas developed mild to moderately severe corneal haze. In each of the three regions of the corneas examined, there were on average more than 9x more SMA+GFP+ than SMA+GFP myofibroblasts. This difference was significant (p < 0.01). There were significantly more (p < 0.01) SMA GFP+ cells, which likely include inflammatory cells, than SMA+GFP+ or SMA+GFP cells, although SMA GFP cells represent the largest population of cells in the corneas. In this mouse model, the majority of myofibroblasts developed from bone marrow-derived cells. It is possible that all myofibroblasts in these animals developed from bone marrow-derived cells since mouse chimeras produced using this method had only 60-95% of bone marrow-derived cells that were GFP+ and it is not possible to achieve 100% chimerization. This model, therefore, cannot exclude the possibility of myofibroblasts also developed from keratocytes and/or corneal fibroblasts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To describe the use of self-expandable metallic stents to manage malignant colorectal obstructions and to compare the radiation dose between fluoroscopic guidance of stent placement and combined endoscopic and fluoroscopic guidance. Materials and Methods: From January 1998 to December 2007, 467 oncology patients undergoing colorectal stent placement in a single center were included in the study. Informed consent was obtained in all cases. All procedures were performed with fluoroscopic or combined fluoroscopic and endoscopic guidance. Inclusion criteria were total or partial colorectal obstruction of neoplastic origin. Exclusion criteria were life expectancy shorter than I month, suspicion of perforation, and/or severe colonic neoplastic bleeding. Procedure time and radiation dose were recorded, and technical and clinical success were evaluated. Follow-up was performed by clinical examination and simple abdominal radiographs at 1 day and at I, 3, 6, and 12 months. Results: Of 467 procedures, technical success was achieved in 432 (92.5%). Thirty-five treatments (7.5%) were technical failures, and the patients were advised to undergo surgery. Significant differences in radiation dose and clinical success were found between the fluoroscopy and combined-technique groups (P < .001). Total decompression was achieved in 372 cases, 29 patients showed remarkable improvement, 11 showed slight improvement, and 20 showed clinical failure. Complications were recorded in 89 patients (19%), the most significant were perforation (2.3%) and stent migration (6.9%). Mean interventional time and radiation dose were 67 minutes and 3,378 dGy.cm(2), respectively. Conclusions: Treatment of colonic obstruction with stents requires a long time in the interventional room and considerable radiation dose. Nevertheless, the clinical benefits and improvement in quality of life justify the radiation risk.
Resumo:
BACKGROUND: One of the key elements for a successful endoscopic intervention in the ventricular system is the ability to recognize the anatomic structures and use them as a reference. OBJECTIVE: To measure the choroid plexus with endoscopy in the interventricular foramen, together with the structures on the third ventricle floor, and to compare these variables. METHODS: An observational prospective study was carried out on 37 brains of cadavers for which the cause of death was assessed at the Death Check Unit of the University of Sao Paulo in April 2008. This study was done on adults of both sexes with a rigid neuroendoscope. Endoscopic images were recorded, submitted for correction of distortion, and then measured. RESULTS: The measurements of the choroid plexus in the interventricular foramen, laterolateral distance of mammillary bodies, distance from the infundibular recess to the mammillary bodies, and area of the triangle in the tuber cinereum were 1.71 +/- 0.77 mm, 2.23 +/- 0.74 mm, 3.22 +/- 0.82 mm, and 3.69 +/- 2.09 mm(2), respectively. The ventricle floor was opaque in 84% of cases. The internal distance of mammillary bodies was absent in 89%. Associations between the translucent floor of the third ventricle and laterolateral distance of mammillary bodies, internal distance of mammillary bodies, and age were identified. CONCLUSION: Before this research, there was no record of the measurements of the choroid plexus in the interventricular foramen. The remaining variables of the present study show a greater number in normal brains compared with others.