5 resultados para Separability Criterion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We present a constructive argument to demonstrate the universality of the sudden death of entanglement in the case of two non-interacting qubits, each of which generically coupled to independent Markovian environments at zero temperature. Conditions for the occurrence of the abrupt disappearance of entanglement are determined and, most importantly, rigourously shown to be almost always satisfied: Dynamical models for which the sudden death of entanglement does not occur are seen to form a highly idealized zero-measure subset within the set of all possible quantum dynamics.
Resumo:
We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau`s criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent.
Resumo:
Each square complex matrix is unitarily similar to an upper triangular matrix with diagonal entries in any prescribed order. Let A = [a(ij)] and B = [b(ij)] be upper triangular n x n matrices that are not similar to direct sums of square matrices of smaller sizes, or are in general position and have the same main diagonal. We prove that A and B are unitarily similar if and only if parallel to h(A(k))parallel to = parallel to h(B(k))parallel to for all h is an element of C vertical bar x vertical bar and k = 1, ..., n, where A(k) := [a(ij)](i.j=1)(k) and B(k) := [b(ij)](i.j=1)(k) are the leading principal k x k submatrices of A and B, and parallel to . parallel to is the Frobenius norm. (C) 2011 Elsevier Inc. All rights reserved.