8 resultados para Schwarz Information Criterion

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

80.00% 80.00%

Publicador:

Resumo:

So Paulo is the most developed state in Brazil and contains few fragments of native ecosystems, generally surrounded by intensive agriculture lands. Despite this, some areas still shelter large native animals. We aimed at understanding how medium and large carnivores use a mosaic landscape of forest/savanna and agroecosystems, and how the species respond to different landscape parameters (percentage of landcover and edge density), in a multi-scale perspective. The response variables were: species richness, carnivore frequency and frequency for the three most recorded species (Puma concolor, Chrysocyon brachyurus and Leopardus pardalis). We compared 11 competing models using Akaike`s information criterion (AIC) and assessed model support using weight of AIC. Concurrent models were combinations of landcover types (native vegetation, ""cerrado"" formations, ""cerrado"" and eucalypt plantation), landscape feature (percentage of landcover and edge density) and spatial scale. Herein, spatial scale refers to the radius around a sampling point defining a circular landscape. The scales analyzed were 250 (fine), 1,000 (medium) and 2,000 m (coarse). The shape of curves for response variables (linear, exponential and power) was also assessed. Our results indicate that species with high mobility, P. concolor and C. brachyurus, were best explained by edge density of the native vegetation at a coarse scale (2,000 m). The relationship between P. concolor and C. brachyurus frequency had a negative power-shaped response to explanatory variables. This general trend was also observed for species richness and carnivore frequency. Species richness and P. concolor frequency were also well explained by a second concurrent model: edge density of cerrado at the fine (250 m) scale. A different response was recorded for L. pardalis, as the frequency was best explained for the amount of cerrado at the fine (250 m) scale. The curve of response was linearly positive. The contrasting results (P. concolor and C. brachyurus vs L. pardalis) may be due to the much higher mobility of the two first species, in comparison with the third. Still, L. pardalis requires habitat with higher quality when compared with other two species. This study highlights the importance of considering multiple spatial scales when evaluating species responses to different habitats. An important and new finding was the prevalence of edge density over the habitat extension to explain overall carnivore distribution, a key information for planning and management of protected areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1. Analyses of species association have major implications for selecting indicators for freshwater biomonitoring and conservation, because they allow for the elimination of redundant information and focus on taxa that can be easily handled and identified. These analyses are particularly relevant in the debate about using speciose groups (such as the Chironomidae) as indicators in the tropics, because they require difficult and time-consuming analysis, and their responses to environmental gradients, including anthropogenic stressors, are poorly known. 2. Our objective was to show whether chironomid assemblages in Neotropical streams include clear associations of taxa and, if so, how well these associations could be explained by a set of models containing information from different spatial scales. For this, we formulated a priori models that allowed for the influence of local, landscape and spatial factors on chironomid taxon associations (CTA). These models represented biological hypotheses capable of explaining associations between chironomid taxa. For instance, CTA could be best explained by local variables (e.g. pH, conductivity and water temperature) or by processes acting at wider landscape scales (e.g. percentage of forest cover). 3. Biological data were taken from 61 streams in Southeastern Brazil, 47 of which were in well-preserved regions, and 14 of which drained areas severely affected by anthropogenic activities. We adopted a model selection procedure using Akaike`s information criterion to determine the most parsimonious models for explaining CTA. 4. Applying Kendall`s coefficient of concordance, seven genera (Tanytarsus/Caladomyia, Ablabesmyia, Parametriocnemus, Pentaneura, Nanocladius, Polypedilum and Rheotanytarsus) were identified as associated taxa. The best-supported model explained 42.6% of the total variance in the abundance of associated taxa. This model combined local and landscape environmental filters and spatial variables (which were derived from eigenfunction analysis). However, the model with local filters and spatial variables also had a good chance of being selected as the best model. 5. Standardised partial regression coefficients of local and landscape filters, including spatial variables, derived from model averaging allowed an estimation of which variables were best correlated with the abundance of associated taxa. In general, the abundance of the associated genera tended to be lower in streams characterised by a high percentage of forest cover (landscape scale), lower proportion of muddy substrata and high values of pH and conductivity (local scale). 6. Overall, our main result adds to the increasing number of studies that have indicated the importance of local and landscape variables, as well as the spatial relationships among sampling sites, for explaining aquatic insect community patterns in streams. Furthermore, our findings open new possibilities for the elimination of redundant data in the assessment of anthropogenic impacts on tropical streams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we make use of some stochastic volatility models to analyse the behaviour of a weekly ozone average measurements series. The models considered here have been used previously in problems related to financial time series. Two models are considered and their parameters are estimated using a Bayesian approach based on Markov chain Monte Carlo (MCMC) methods. Both models are applied to the data provided by the monitoring network of the Metropolitan Area of Mexico City. The selection of the best model for that specific data set is performed using the Deviance Information Criterion and the Conditional Predictive Ordinate method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration. EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(m)(2)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (+/-0.243) -1.268 (+/-0.125).X(m)(2)r (adj-R(2) = 0.9113, Alkaike information criterion [AIC] = 60.42). Additional two- and three-variable models were also tested and proved less suitable to fit the experimental data. These results indicate that covalent bonding is a good indicator of metal inherent toxicity to bioluminescent fungi. Furthermore, the toxicity of additional metal ions [Ag(I), Cs(I), Sr(II), Ba(II), Fe(II), Hg(II), and Pb(II)] to G. viridilucens was predicted, and Pb was found to be the most toxic metal to this bioluminescent fungus (EC50(F)): Pb(II) > Ag(I) > Hg(I) > Cd(II) > Cu(II) > Co(II) Ni(II) > Mn(II) > Fe(II) approximate to Zn(II) > Mg(II) approximate to Ba(II) approximate to Cs(I) > Li(I) > K(I) approximate to Na(I) approximate to Sr(II)> Ca(II). Environ. Toxicol. Chem. 2010;29:2177-2181. (C) 2010 SETAC