9 resultados para STRINGS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We consider pulsating strings in Lunin-Maldacena backgrounds, specifically in deformed Minkowski spacetime and deformed AdS(5) x S(5). We find the relation between the energy and the oscillation number of the pulsating string when the deformation is small. Since the oscillation number is an adiabatic invariant it can be used to explore the regime of highly excited string states. We then quantize the string and look for such a sector. For the deformed Minkowski background we find a precise match with the classical results if the oscillation number is quantized as an even number. For the deformed AdS(5) x S(5) we find a contribution which depends on the deformation parameter.
Resumo:
In this paper, rotating strings in three directions of AdS(4) x CP(3) geometry are studied; its divergent energy limit, and conserved charges are also determined. An interpretation of these configurations as either giant magnons or spiky strings is discussed.
Resumo:
A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.
Resumo:
Using a new proposal for the ""picture lowering"" operators, we compute the tree level scattering amplitude in the minimal pure spinor formalism by performing the integration over the pure spinor space as a multidimensional Cauchy-type integral. The amplitude will be written in terms of the projective pure spinor variables, which turns out to be useful to relate rigorously the minimal and non-minimal versions of the pure spinor formalism. The natural language for relating these formalisms is the. Cech-Dolbeault isomorphism. Moreover, the Dolbeault cocycle corresponding to the tree-level scattering amplitude must be evaluated in SO(10)/SU(5) instead of the whole pure spinor space, which means that the origin is removed from this space. Also, the. Cech-Dolbeault language plays a key role for proving the invariance of the scattering amplitude under BRST, Lorentz and supersymmetry transformations, as well as the decoupling of unphysical states. We also relate the Green`s function for the massless scalar field in ten dimensions to the tree-level scattering amplitude and comment about the scattering amplitude at higher orders. In contrast with the traditional picture lowering operators, with our new proposal the tree level scattering amplitude is independent of the constant spinors introduced to define them and the BRST exact terms decouple without integrating over these constant spinors.
Resumo:
Given two strings A and B of lengths n(a) and n(b), n(a) <= n(b), respectively, the all-substrings longest common subsequence (ALCS) problem obtains, for every substring B` of B, the length of the longest string that is a subsequence of both A and B. The ALCS problem has many applications, such as finding approximate tandem repeats in strings, solving the circular alignment of two strings and finding the alignment of one string with several others that have a common substring. We present an algorithm to prepare the basic data structure for ALCS queries that takes O(n(a)n(b)) time and O(n(a) + n(b)) space. After this preparation, it is possible to build that allows any LCS length to be retrieved in constant time. Some trade-offs between the space required and a matrix of size O(n(b)(2)) the querying time are discussed. To our knowledge, this is the first algorithm in the literature for the ALCS problem. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We explicitly construct a stationary coupling attaining Ornstein`s (d) over bar -distance between ordered pairs of binary chains of infinite order. Our main tool is a representation of the transition probabilities of the coupled bivariate chain of infinite order as a countable mixture of Markov transition probabilities of increasing order. Under suitable conditions on the loss of memory of the chains, this representation implies that the coupled chain can be represented as a concatenation of i.i.d. sequences of bivariate finite random strings of symbols. The perfect simulation algorithm is based on the fact that we can identify the first regeneration point to the left of the origin almost surely.
Resumo:
We study the 1-parameter Wecken problem versus the restricted Wecken problem, for coincidence free pairs of maps between surfaces. For this we use properties of the function space between two surfaces and of the pure braid group on two strings of a surface. When the target surface is either the 2-sphere or the torus it is known that the two problems are the same. We classify most pairs of homotopy classes of maps according to the answer of the two problems are either the same or different when the target is either projective space or the Klein bottle. Some partial results are given for surfaces of negative Euler characteristic. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
Let M be a compact, connected non-orientable surface without boundary and of genus g >= 3. We investigate the pure braid groups P,(M) of M, and in particular the possible splitting of the Fadell-Neuwirth short exact sequence 1 -> P(m)(M \ {x(1), ..., x(n)}) hooked right arrow P(n+m)(M) (P*) under right arrow P(n)(M) -> 1, where m, n >= 1, and p* is the homomorphism which corresponds geometrically to forgetting the last m strings. This problem is equivalent to that of the existence of a section for the associated fibration p: F(n+m)(M) -> F(n)(M) of configuration spaces, defined by p((x(1), ..., x(n), x(n+1), ..., x(n+m))) = (x(1), ..., x(n)). We show that p and p* admit a section if and only if n = 1. Together with previous results, this completes the resolution of the splitting problem for surface pure braid groups. (C) 2009 Elsevier B.V. All rights reserved.