95 resultados para STEM-LIKE CELLS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Hepatic progenitor cells (HPCs) are bipotential stem cells residing in human and animal livers that are able to differentiate towards the hepatocytic or cholangiocytic lineages. HPCs are present in both hepatocellular (HCC) and cholangiocellular carcinoma (CC) in humans; and a small percentage of HCC can originate from cancer stem cells. However, its distribution in canine liver tumour has not been studied. Herein, we searched for stem/progenitor cells in 13 HCC and 7 CC archived samples by immunohistochemical analysis. We found that both liver tumours presented a higher amount of K19-positive HPCs. Besides, 61.6% of HCC cases presented immature CD44-positive hepatocytes. Nevertheless, only two cases presented CD133-positive cells. As observed in humans, hepatic canine tumours presented activated HPCs, with important differentiation onto hepatocytes-like cells and minimal role of cancer stem cells on HCC. These findings reiterate the applicability of canine model in the search for new therapies before application in humans.
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
To better understand the early events regulating lineage-specific hematopoietic differentiation, we analyzed the transcriptional profiles of CD34+ human hematopoietic stem and progenitor cells (HSPCs) subjected to differentiation stimulus. CD34+ cells were cultured for 12 and 40 h in liquid cultures with supplemented media favoring myeloid or erythroid commitment. Serial analysis of gene expression (SAGE) was employed to generate four independent libraries. By analyzing the differentially expressed regulated transcripts between the un-stimulated and the stimulated CD34+ cells, we observed a set of genes that was initially up-regulated at 12 h but were then down-regulated at 40 h, exclusively after myeloid stimulus. Among those we found transcripts for NFKB2, RELB, IL1B, LTB, LTBR, TNFRSF4, TGFB1, and IKBKA. Also, the inhibitor NFKBIA (IKBA) was more expressed at 12 h. All those transcripts code for signaling proteins of the nuclear factor kappaB pathway. NFKB2 is a subunit of the NF-kappa B transcription factor that with RELB mediates the non-canonical NF-kappa B pathway. Interference RNA (RNAi) against NFKB1, NFKB2 and control RNAi were transfected into bone marrow CD34+HSPC. The percentage and the size of the myeloid colonies derived from the CD34+ cells decreased after inhibition of NFKB2. Altogether, our results indicate that NFKB2 gene has a role in the early commitment of CD34+HSPC towards the myeloid lineage. (C) 2010 International Society of Differentiation. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).
Resumo:
Aim: The aim of the present study was to assess the influence of the chemical characteristics and roughness of titanium surfaces on the viability, proliferation and differentiation of osteoblast-like cells cultured in a medium supplemented with recombinant human bone morphogenetic protein-7 (rhBMP-7). Material and methods: Osteo-1 cells were grown on titanium disks presenting with the following surfaces: (1) machined, (2) coarse grit-blasted and acid-attacked (SLA) and (3) chemically modified SLA (SLAmod) in the absence or presence of 20 ng/ml rhBMP-7 in culture medium. The viability and number of osteo-1 cells were evaluated after 24 h. Analyses of total protein content (TP) and alkaline phosphatase (AP) activity at 7, 14 and 21 days, collagen content at 7 and 21 days and mineralized matrix formation at 21 days were performed. Results: Cell viability (P=0.5516), cell number (P=0.3485), collagen content (P=0.1165) and mineralized matrix formation (P=0.5319) were not affected by the different surface configurations or by the addition of rhBMP-7 to the medium. Osteo-1 cells cultured on SLA surfaces showed a significant increase in TP at 21 days. The ALPase/TP ratio (P=0.00001) was affected by treatment and time. Conclusion: The results suggest that the addition of rhBMP-7 to the culture medium did not exert any effect on the viability, proliferation or differentiation of osteoblast-like cells grown on the different surfaces tested. All titanium surfaces analyzed allowed the complete expression of the osteoblast phenotype such as matrix mineralization by osteo-1 cells.
Resumo:
This study evaluated the cytotoxic effects of a carbamide peroxide (CP) bleaching gel at different concentrations on odontoblast-like cells. Immortalized cells of the MDPC-23 cell line (30,000 cells/cm(2)) were incubated for 48 h. The bleaching gel was diluted in DMEM culture medium originating extracts with different CP concentrations. The amount (mu g/mL) of hydrogen peroxide (H(2)O(2)) released from each extract was measured by the leukocrystal violet/horseradish peroxidase enzyme assay. Five groups (n = 10) were formed according to the CP concentration in the extracts: G1-DMEM (control); G2-0.0001 % CP (0.025 mu g/mL H(2)O(2)); G3-0.001% CP (0.43 mu g/mL H(2)O(2)); G4-0.01% CP (2.21 mu g/mL H(2)O(2)); and G5-0.1 % CP (29.74 mu g/mL H(2)O(2)). MDPC-23 cells were exposed to the bleaching gel extracts for 60 min and cell metabolism was evaluated by the NITT assay. Data were analyzed statistically by one-way ANOVA and Tukey`s test (alpha = 0.05). Cell morphology was examined by scanning electron microscopy. The percentages of viable cells were as follows: G1, 100%; G2, 89.41%; G3, 82.4%; G4, 61.5%; and G5, 23.0%. G2 and G3 did not differ significantly (p > 0.05) from G1. The most severe cytotoxic effects were observed in G3 and G4. In conclusion, even at low concentrations, the CP gel extracts presented cytotoxic effects. This cytotoxicity was dose-dependent, and the 0.1% CP concentration caused the most intense cytopathic effects to the MDPC-23 cells. (C) 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 9013: 907-912, 2009
Resumo:
Previous studies showed anabolic effects of GC-1, a triiodothyronine (T3) analogue that is selective for both binding and activation functions of thyroid hormone receptor (TR) beta 1 over TR alpha 1, on bone tissue in vivo. The aim of this study was to investigate the responsiveness of rat (ROS17/2.8) and mouse (MC3T3-E1) osteoblast-like cells to GC-1. As expected, T3 inhibited cellular proliferation and stimulated mRNA expression of osteocalcin or alkaline phosphatase in both cell lineages. Whereas equimolar doses of T3 and GC-1 equally affected these parameters in ROS17/2.8 cells, the effects of GC-1 were more modest compared to those of T3 in MC3T3-E1 cells. Interestingly, we showed that there is higher expression of TR alpha 1 than TR beta 1 mRNA in rat (similar to 20-90%) and mouse (similar to 90-98%) cell lineages and that this difference is even higher in mouse cells, which highlights the importance of TR alpha 1 to bone physiology and may partially explain the modest effects of GC-1 in comparison with T3 in MC3T3-E1 cells. Nevertheless, we showed that TR beta 1 mRNA expression increases (similar to 2.8- to 4.3-fold) as osteoblastic cells undergo maturation, suggesting a key role of TR beta 1 in mediating T3 effects in the bone forming cells, especially in mature osteoblasts. It is noteworthy that T3 and GC-1 induced TR beta 1 mRNA expression to a similar extent in both cell lineages (similar to 2- to 4-fold), indicating that both ligands may modulate the responsiveness of osteoblasts to T3. Taken together, these data show that TR beta selective T3 analogues have the potential to directly induce the differentiation and activity of osteoblasts.
Resumo:
The aim of this study was to evaluate the metabolism of odontoblast-like MDPC-23 cells subjected to direct LLL irradiation. The cells were seeded (20,000 cells/well) in 24-well plates and incubated for 24 hours at 37 degrees C. After this period, the culture medium (DMEM) was replaced by fresh DMEM supplemented with 2 or 5% (stress induction by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to laser doses of 2, 4, 10, 15 and 25 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 +/- 3 nm, 40 mW). One control group (sham irradiation) was established for each experimental condition (laser dose x FBS supplementation). Three and 72 hours after the last irradiation, cells were analyzed with respect to metabolism, morphology, total protein expression and alkaline phosphatase (ALP) activity. Higher metabolism and total protein expression were observed 72 hours after the last irradiation at the doses of 15 and 25 J/cm(2) (Mann-Whitney; p<0.05). Higher ALP activity was obtained with 5% FBS when the cells were irradiated with doses of 2 and 10 J/cm(2). For the dose of 25 J/cm(2), the highest ALP activity was observed with 10% FBS. It was concluded that the LLLT parameters used in this study stimulated the metabolic activity of the MDPC-23 cells, especially at the doses of 15 and 25 J/cm(2).
Resumo:
Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm(2) were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO(2) at 37 degrees C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm(2) + 5% FBS; G2: 1.5 J/cm(2) + 10% FBS; G3: 5 J/cm(2) + 5% FBS; G4: 5 J/cm(2) + 10% FBS; G5: 19 J/cm(2) + 5% FBS; G6: 19 J/cm(2) + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm(2). These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.
Resumo:
Low-level laser therapy (LLLT), also referred to as therapeutic laser, has been recommended for a wide array of clinical procedures, among which the treatment of dentinal hypersensitivity. However, the mechanism that guides this process remains unknown. Therefore, the objective of this study was to evaluate in vitro the effects of LLL irradiation on cell metabolism (MTT assay), alkaline phosphatase (ALP) expression and total protein synthesis. The expression of genes that encode for collagen type-1 (Col-1) and fibronectin (FN) was analyzed by RT-PCR. For such purposes, oclontoblast-like cell line (MDPC-23) was previously cultured in Petri dishes (15000 cells/cm(2)) and submitted to stress conditions during 12 h. Thereafter, 6 applications with a monochromatic near infrared radiation (GaAlAs) set at predetermined parameters were performed at 12-h intervals. Non-irradiated cells served as a control group. Neither the MTT values nor the total protein levels of the irradiated group differed significantly from those of the control group (Mann-Whitney test; p > 0.05). On the other hand, the irradiated cells showed a decrease in ALP activity (Mann-Whitney test; p < 0.05). RT-PCR results demonstrated a trend to a specific reduction in gene expression after cell irradiation, though not significant statistically (Mann-Whitney test; p > 0.05). It may be concluded that, under the tested conditions, the LLLT parameters used in the present study did not influence cell metabolism, but reduced slightly the expression of some specific proteins.
Resumo:
Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.
Resumo:
The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naive cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.
Resumo:
CD133 antigen is an integral membrane glycoprotein that can bind with different cells. Originally, however. this cellular surface antigen was expressed in human stem cells and in various cellular progenitors of the haematopoietic system. Human cord blood has been described as an excellent source of CD133(+) haematopoietic progenitor cells with a large application potential. One of the main objectives of the present study is to describe for the first time the ultrastructural characteristics of CD133(+) stem cells using transmission electronic microscopy. Another objective of the manuscript is to demonstrate through transmission electronic microscopy the molecular image of magnetic nanoparticles connected to the stein cells of great biotechnological importance, as well as demonstrating the value of this finding for electronic paramagnetic resonance and its related nanobioscientific value. Ultrastructural results showed the monoclonal antibody anti-CD133 bound to the superparamagnetic nanoparticles by the presence of electrondense granules in cell membrane, as well as in the cytoplasm, revealing the ultrastructural characteristics of CD133(+) cells, exhibiting a round morphology with discrete cytoplasmic projections, having an active nucleus that follows this morphology. The cellular cytoplasm was filled up with mitochondrias, as well as microtubules and vesicles pinocitic. characterizing the process as being related to internalization of the magnetic nanoparticles that were endocyted by the cells in question. Electronic paramagnetic resonance analysis of the CD133(+) stem cells detected that the small (spectrum) generated by the labelled cells comes from the superparamagnetic nanoparticles that are bound to them. These results strongly suggest that these CD133(+) cells can be used in nanobiotechnology applications, with benefits in different biomedical areas.
Resumo:
The idea that within the bulk of leukemic cells there are immature progenitors which are intrinsically resistant to chemotherapy and able to repopulate the tumor after treatment is not recent. Nevertheless, the term leukemia stem cells (LSCs) has been adopted recently to describe these immature progenitors based on the fact that they share the most relevant features of the normal hematopoetic stem cells (HSCs), i.e. the self-renewal potential and quiescent status. LSCs differ from their normal counterparts and from the more differentiated leukemic cells regarding the default status of pathways regulating apoptosis, cell cycle, telomere maintenance and transport pumps activity. In addition, unique features regarding the interaction of these cells with the microenvironment have been characterized. Therapeutic strategies targeting these unique features are at different stages of development but the reported results are promising. The aim of this review is, by taking acute myeloid leukemia (AML) as a bona fide example, to discuss some of the mechanisms used by the LSCs to survive and the strategies which could be used to eradicate these cells.