309 resultados para SPECKLE MODEL ESTIMATOR
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Mixed models may be defined with or without reference to sampling, and can be used to predict realized random effects, as when estimating the latent values of study subjects measured with response error. When the model is specified without reference to sampling, a simple mixed model includes two random variables, one stemming from an exchangeable distribution of latent values of study subjects and the other, from the study subjects` response error distributions. Positive probabilities are assigned to both potentially realizable responses and artificial responses that are not potentially realizable, resulting in artificial latent values. In contrast, finite population mixed models represent the two-stage process of sampling subjects and measuring their responses, where positive probabilities are only assigned to potentially realizable responses. A comparison of the estimators over the same potentially realizable responses indicates that the optimal linear mixed model estimator (the usual best linear unbiased predictor, BLUP) is often (but not always) more accurate than the comparable finite population mixed model estimator (the FPMM BLUP). We examine a simple example and provide the basis for a broader discussion of the role of conditioning, sampling, and model assumptions in developing inference.
Resumo:
Leaf wetness duration (LWD) is a key parameter in agricultural meteorology since it is related to epidemiology of many important crops, controlling pathogen infection and development rates. Because LWD is not widely measured, several methods have been developed to estimate it from weather data. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results, but their complexity is a disadvantage for operational use. Alternatively, empirical models have been used despite their limitations. The simplest empirical models use only relative humidity data. The objective of this study was to evaluate the performance of three RH-based empirical models to estimate LWD in four regions around the world that have different climate conditions. Hourly LWD, air temperature, and relative humidity data were obtained from Ames, IA (USA), Elora, Ontario (Canada), Florence, Toscany (Italy), and Piracicaba, Sao Paulo State (Brazil). These data were used to evaluate the performance of the following empirical LWD estimation models: constant RH threshold (RH >= 90%); dew point depression (DPD); and extended RH threshold (EXT_RH). Different performance of the models was observed in the four locations. In Ames, Elora and Piracicaba, the RH >= 90% and DPD models underestimated LWD, whereas in Florence these methods overestimated LWD, especially for shorter wet periods. When the EXT_RH model was used, LWD was overestimated for all locations, with a significant increase in the errors. In general, the RH >= 90% model performed best, presenting the highest general fraction of correct estimates (F(C)), between 0.87 and 0.92, and the lowest false alarm ratio (F(AR)), between 0.02 and 0.31. The use of specific thresholds for each location improved accuracy of the RH model substantially, even when independent data were used; MAE ranged from 1.23 to 1.89 h, which is very similar to errors obtained with published physical models for LWD estimation. Based on these results, we concluded that, if calibrated locally, LWD can be estimated with acceptable accuracy by RH above a specific threshold, and that the EXT_RH method was unsuitable for estimating LWD at the locations used in this study. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.
Resumo:
In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression model with equation errors Sufficient conditions for attaining consistent estimators for model parameters are presented Asymptotic distributions for the line regression estimators are derived Applications to the elliptical class of distributions with two error assumptions are presented The model generalizes previous results aimed at univariate scenarios (C) 2010 Elsevier Inc All rights reserved
Resumo:
In this article, we present the EM-algorithm for performing maximum likelihood estimation of an asymmetric linear calibration model with the assumption of skew-normally distributed error. A simulation study is conducted for evaluating the performance of the calibration estimator with interpolation and extrapolation situations. As one application in a real data set, we fitted the model studied in a dimensional measurement method used for calculating the testicular volume through a caliper and its calibration by using ultrasonography as the standard method. By applying this methodology, we do not need to transform the variables to have symmetrical errors. Another interesting aspect of the approach is that the developed transformation to make the information matrix nonsingular, when the skewness parameter is near zero, leaves the parameter of interest unchanged. Model fitting is implemented and the best choice between the usual calibration model and the model proposed in this article was evaluated by developing the Akaike information criterion, Schwarz`s Bayesian information criterion and Hannan-Quinn criterion.
Resumo:
We discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models. We generalize an earlier work, considering the sojourn times in health states are not identically distributed, for a given vector of covariates. Approaches based on semiparametric and parametric (exponential and Weibull distributions) methodologies are considered. A simulation study is conducted to evaluate the performance of the proposed estimator and the jackknife resampling method is used to estimate the variance of such estimator. An application to a real data set is also included.
Resumo:
In clinical trials, it may be of interest taking into account physical and emotional well-being in addition to survival when comparing treatments. Quality-adjusted survival time has the advantage of incorporating information about both survival time and quality-of-life. In this paper, we discuss the estimation of the expected value of the quality-adjusted survival, based on multistate models for the sojourn times in health states. Semiparametric and parametric (with exponential distribution) approaches are considered. A simulation study is presented to evaluate the performance of the proposed estimator and the jackknife resampling method is used to compute bias and variance of the estimator. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We analyse the finite-sample behaviour of two second-order bias-corrected alternatives to the maximum-likelihood estimator of the parameters in a multivariate normal regression model with general parametrization proposed by Patriota and Lemonte [A. G. Patriota and A. J. Lemonte, Bias correction in a multivariate regression model with genereal parameterization, Stat. Prob. Lett. 79 (2009), pp. 1655-1662]. The two finite-sample corrections we consider are the conventional second-order bias-corrected estimator and the bootstrap bias correction. We present the numerical results comparing the performance of these estimators. Our results reveal that analytical bias correction outperforms numerical bias corrections obtained from bootstrapping schemes.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.
Resumo:
The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.
Resumo:
This study ascertained whether under dental erosion models that closely mimics the real-life situation enamel and root dentin from bovine origin would be reliable substitutes for human counterparts. Through a 2x2 crossover design, in a first trial, 14 volunteers wore a palatal device containing slabs of bovine and human enamel. Half of the participants ingested (4x daily, for 10 days) orange juice first, crossing over to mineral water, while the remainder received the reverse sequence. In a second trial, volunteers wore devices with slabs of bovine and human root dentin. Except for the duration of each intraoral phase, which lasted 2 rather 10 days, the experiment with root dentin run exactly as for enamel. Dental substrates were analyzed for surface microhardness. Two-way ANOVAs (α=0.05) indicated no difference between the microhardness values recorded for human and bovine enamel (p=0.1350), but bovine root dentin had lower microhardness compared to its human counterpart (p=0.0432). While bovine enamel can reliably substitute its human counterpart in in situ dental erosion models, bovine root dentin does not seem to be a viable alternative to the corresponding human tissue.
Resumo:
PURPOSE: To develop an experimental surgical model in rats for the study of craniofacial abnormalities. METHODS: Full thickness calvarial defects with 10x10-mm and 5x8-mm dimensions were created in 40 male NIS Wistar rats, body weight ranging from 320 to 420 g. The animals were equally divided into two groups. The periosteum was removed and dura mater was left intact. Animals were killed at 8 and 16 weeks postoperatively and cranial tissue samples were taken from the defects for histological analysis. RESULTS: Cranial defects remained open even after 16 weeks postoperatively. CONCLUSION: The experimental model with 5x8-mm defects in the parietal region with the removal of the periosteum and maintenance of the integrity of the dura mater are critical and might be used for the study of cranial bone defects in craniofacial abnormalities.
Resumo:
The quantification of the available energy in the environment is important because it determines photosynthesis, evapotranspiration and, therefore, the final yield of crops. Instruments for measuring the energy balance are costly and indirect estimation alternatives are desirable. This study assessed the Deardorff's model performance during a cycle of a sugarcane crop in Piracicaba, State of São Paulo, Brazil, in comparison to the aerodynamic method. This mechanistic model simulates the energy fluxes (sensible, latent heat and net radiation) at three levels (atmosphere, canopy and soil) using only air temperature, relative humidity and wind speed measured at a reference level above the canopy, crop leaf area index, and some pre-calibrated parameters (canopy albedo, soil emissivity, atmospheric transmissivity and hydrological characteristics of the soil). The analysis was made for different time scales, insolation conditions and seasons (spring, summer and autumn). Analyzing all data of 15 minute intervals, the model presented good performance for net radiation simulation in different insolations and seasons. The latent heat flux in the atmosphere and the sensible heat flux in the atmosphere did not present differences in comparison to data from the aerodynamic method during the autumn. The sensible heat flux in the soil was poorly simulated by the model due to the poor performance of the soil water balance method. The Deardorff's model improved in general the flux simulations in comparison to the aerodynamic method when more insolation was available in the environment.