94 resultados para SOI MULTIPLE GATE FET (MUGFET)

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the titanium nitride (TIN) gate electrode thickness has been investigated in n and p channel SOI multiple gate field effect transistors (MuGFETs) through low frequency noise charge pumping and static measurements as well as capacitance-voltage curves The results suggest that a thicker TIN metal gate electrode gives rise to a higher EOT a lower mobility and a higher interface trap density The devices have also been studied for different back gate biases where the GIFBE onset occurs at lower front-gate voltage for thinner TIN metal gate thickness and at higher V(GF) In addition it is demonstrated that post deposition nitridation of the MOCVD HfSiO gate dielectric exhibits an unexpected trend with TIN gate electrode thickness where a continuous variation of EOT and an increase on the degradation of the interface quality are observed (C) 2010 Elsevier Ltd All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work characterizes the analog performance of SOI n-MuGFETs with HfSiO gate dielectric and TiN metal gate with respect to the influence of the high-k post-nitridation. TiN thickness and device rotation. A thinner TiN metal gate is found favorable for improved analog characteristics showing an increase in intrinsic voltage gain. The devices where the high-k material is subjected to a nitridation step indicated a degradation of the Early voltage (V(EA)) values which resulted in a lower voltage gain. The 45 degrees rotated devices have a smaller V(EA) than the standard ones when a HfSiO dielectric is used. However, the higher transconductance of these devices, due to the increased mobility in the (1 0 0) sidewall orientation, compensates this V(EA) degradation of the voltage gain, keeping it nearly equal to the voltage gain values of the standard devices. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the evaluation of the analog properties of nMOS junctionless (JL) multigate transistors, comparing their performance with those exhibited by inversion-mode (IM) trigate devices of similar dimensions. The study has been performed for devices operating in saturation as single-transistor amplifiers, and we have considered the dependence of the analog properties on fin width W(fin) and temperature T. Furthermore, this paper aims at providing a physical insight into the analog parameters of JL transistors. For that, in addition to device characterization, 3-D device simulations were performed. It is shown that, depending on gate voltage, JL devices can present both larger Early voltage V(EA) and larger intrinsic voltage gain A(V) than IM devices of similar dimensions. In addition, V(EA) and A(V) are always improved in JL devices when the temperature is increased, whereas they present a maximum value around room temperature for IM transistors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses on the impact of the source and drain Selective Epitaxial Growth (SEG) on the performance of uniaxially strained MuGFETs. With the channel length reduction, the normalized transconductance (gm.L./W) of unstressed MuGFETs decreases due to the series resistance and short channel effects (SCE), while the presence of uniaxial strain improves the gm. The competition between the series resistance (R(s)) and the uniaxial strain results in a normalized gm maximum point for a specific channel length. Since the SEG structure influences both R(s) and the strain in the channel, this work studies from room down to low temperature how these effects influence the performance of the triple-gate FETs. For lower temperatures, the strain-induced mobility enhancement increases and leads to a shift in the maximum point towards shorter channel lengths for devices without SEG. This shift is not observed for devices with SEG where the strain level is much lower. At 150 K the gm behavior of short channel strained devices with SEG is similar to the non SEC ones due to the better gm temperature enhancement for devices without SEG caused by the strain. For lower temperatures SEG structure is not useful anymore. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multiple-gate field-effect transistor (MuGFET) is a device with a gate folded on different sides of the channel region. They are one of the most promising technological solutions to create high-performance ultra-scaled SOI CMOS. In this work, the behavior of the threshold voltage in double-gate, triple-gate and quadruple-gate SOI transistors with different channel doping concentrations is studied through three-dimensional numerical simulation. The results indicated that for double-gate transistors, one or two threshold voltages can be observed, depending on the channel doping concentration. However, in triple-gate and quadruple-gate it is possible to observe up to four threshold voltages due to the corner effect and the different doping concentration between the top and bottom of the Fin. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FinFETs are recognized as promising candidates for the CMOS nanometer era. In this paper the most recent results for cryogenic operation of FinFETs will be demonstrated with special emphasis on analog applications. Threshold voltage, subthreshold slope and carrier mobility will be studied. Also some important figures of merit for analog circuit operation as for readout electronics, such as transconductance, output conductance and intrinsic voltage gain will be covered. It is demonstrated that the threshold voltage of undoped narrow FinFETs is less temperature-dependent than for a planar single-gate device with similar doping concentration. The temperature reduction improves the transconductance over drain current ratio in any operational region. On the other hand, the output conductance is degraded when the temperature is reduced. The combination of these effects shows that the intrinsic gain of a L = 90 nm FinFET is degraded by 2 dB when the temperature reduces from 300 K to 100 K. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work proposes a refined technique for the extraction of the generation lifetime in single- and double-gate partially depleted SOI nMOSFETs. The model presented in this paper, based on the drain current switch-off transients, takes into account the influence of the laterally non-uniform channel doping, caused by the presence of the halo implanted region, and the amount of charge controlled by the drain and source junctions on the floating body effect when the channel length is reduced. The obtained results for single- gate (SG) devices are compared with two-dimensional numerical simulations and experimental data, extracted for devices fabricated in a 0.1 mu m SOI CMOS technology, showing excellent agreement. The improved model to determine the generation lifetime in double-gate (DG) devices beyond the considerations previously presented also consider the influence of the silicon layer thickness on the drain current transient. The extracted data through the improved model for DG devices were compared with measurements and two-dimensional numerical simulations of the SG devices also presenting a good adjustment with the channel length reduction and the same tendency with the silicon layer thickness variation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a ""C"" shape of the threshold voltage corresponding with the second peak in the gm curve. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trapezium is often a better approximation for the FinFET cross-section shape, rather than the design-intended rectangle. The frequent width variations along the vertical direction, caused by the etching process that is used for fin definition, may imply in inclined sidewalls and the inclination angles can vary in a significant range. These geometric variations may cause some important changes in the device electrical characteristics. This work analyzes the influence of the FinFET sidewall inclination angle on some relevant parameters for analog design, such as threshold voltage, output conductance, transconductance, intrinsic voltage gain (A V), gate capacitance and unit-gain frequency, through 3D numeric simulation. The intrinsic gain is affected by alterations in transconductance and output conductance. The results show that both parameters depend on the shape, but in different ways. Transconductance depends mainly on the sidewall inclination angle and the fixed average fin width, whereas the output conductance depends mainly on the average fin width and is weakly dependent on the sidewall inclination angle. The simulation results also show that higher voltage gains are obtained for smaller average fin widths with inclination angles that correspond to inverted trapeziums, i.e. for shapes where the channel width is larger at the top than at the transistor base because of the higher attained transconductance. When the channel top is thinner than the base, the transconductance degradation affects the intrinsic voltage gain. The total gate capacitances also present behavior dependent on the sidewall angle, with higher values for inverted trapezium shapes and, as a consequence, lower unit-gain frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-K dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present an analysis of harmonic distortion (HD) in graded-channel (GC) gate-all-a round (GAA) devices operating in saturation region for analog applications. The study has been performed through device characterization and two-dimensional process and device simulations. The overall study has been done on the total and third order HDs. When applied in the saturation regime as an amplifier, the GC outperforms conventional GAA transistors presenting simultaneously higher transconductance, lower drain output conductance and more than 15 dB improved linearity. The influence of channel length reduction on the H D is also analyzed. Although slight linearity degradation is observed in both the conventional and the GC devices when reducing the channel length, the HD presented by the GC transistor is significantly lower than the one showed by conventional device for any Studied channel length. This allows AC input signal amplitude up to 20 times higher than the conventional GAA for a same specified distortion level. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During development, children become capable of categorically associating stimuli and of using these relationships for memory recall. Brain damage in childhood can interfere with this development. This study investigated categorical association of stimuli and recall in four children with brain damages. The etiology, topography and timing of the lesions were diverse. Tasks included naming and immediate recall of 30 perceptually and semantically related figures, free sorting, delayed recall, and cued recall of the same material. Traditional neuropsychological tests were also employed. Two children with brain damage sustained in middle childhood relied on perceptual rather than on categorical associations in making associations between figures and showed deficits in delayed or cued recall, in contrast to those with perinatal lesions. One child exhibited normal performance in recall despite categorical association deficits. The present results suggest that brain damaged children show deficits in categorization and recall that are not usually identified in traditional neuropsychological tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The naturally occurring clonal diversity among field isolates of the major human malaria parasite Plasmodium vivax remained unexplored until the early 1990s, when improved molecular methods allowed the use of blood samples obtained directly from patients, without prior in vitro culture, for genotyping purposes. Here we briefly review the molecular strategies currently used to detect genetically distinct clones in patient-derived P. vivax samples, present evidence that multiple-clone P. vivax infections are commonly detected in areas with different levels of malaria transmission and discuss possible evolutionary and epidemiological consequences of the competition between genetically distinct clones in natural human infections. We suggest that, when two or more genetically distinct clones are present in the same host, intra-host competition for limited resources may select for P. vivax traits that represent major public health challenges, such as increased virulence, increased transmissibility and antimalarial drug resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Episodic memory is impaired in multiple sclerosis (MS) patients, possibly because of deficits in working memory (WM) functioning. If so, WM alterations should necessarily be found in patients with episodic memory deficits, but this has not yet been demonstrated. In this study we aimed at determining whether episodic memory deficits in relapsing-remitting MS are found in conjunction with impaired WM. We evaluated 32 MS patients and 32 matched healthy controls. Nineteen of the 32 patients had episodic memory impairment, and as a group only these individuals showed deficits in WM capacity, which may lead to difficulty in encoding, and/or retrieving information from episodic memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new anti-cancer drugs of algal origin represents one of the least explored frontiers in medicinal chemistry. In this regard, the diversity of micro- and macroalgae found in Brazilian coastal waters can be viewed as a largely untapped natural resource. In this report, we describe a comparative study on the cytotoxic properties of extracts obtained from the Laurencia complex: Laurencia aldingensis, L. catarinensis, L. dendroidea, L. intricata, L. translucida, L. sp, and Palisada flagellifera. All of these species were collected in the coastal waters of the State of Espírito Santo, Brazil. Four out of the twelve samples initially investigated were found to show significant levels of toxicity towards a model tumor cell line (human uterine sarcoma, MES-SA). The highest levels of cytotoxicity were typically associated with non-polar (hexane) algal extracts, while the lowest levels of cytotoxicity were found with the corresponding polar (methanol) extracts. In this report, we also describe a biological model currently in development that will not only facilitate the search for new anti-cancer drug candidates of algal origin, but also permit the identification of compounds capable of inducing the destruction of multi-drug resistant tumors with greater efficiency than the pharmaceuticals currently in clinical use.