12 resultados para SEMIGROUPS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we introduce the concept of a gradient-like nonlinear semigroup as an intermediate concept between a gradient nonlinear semigroup (those possessing a Lyapunov function, see [J.K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monogr., vol. 25, Amer. Math. Soc., 1989]) and a nonlinear semigroup possessing a gradient-like attractor. We prove that a perturbation of a gradient-like nonlinear semigroup remains a gradient-like nonlinear semigroup. Moreover, for non-autonomous dynamical systems we introduce the concept of a gradient-like evolution process and prove that a non-autonomous perturbation of a gradient-like nonlinear semigroup is a gradient-like evolution process. For gradient-like nonlinear semigroups and evolution processes, we prove continuity, characterization and (pullback and forwards) exponential attraction of their attractors under perturbation extending the results of [A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suarez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Differential Equations 236 (2007) 570-603] on characterization and of [A.V. Babin, M.I. Vishik, Attractors in Evolutionary Equations, Stud. Math. Appl.. vol. 25, North-Holland, Amsterdam, 1992] on exponential attraction. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we prove that gradient-like semigroups (in the sense of Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) are gradient semigroups (possess a Lyapunov function). This is primarily done to provide conditions under which gradient semigroups, in a general metric space, are stable under perturbation exploiting the known fact (see Carvalho and Langa (2009 J. Diff. Eqns 246 2646-68)) that gradient-like semigroups are stable under perturbation. The results presented here were motivated by the work carried out in Conley (1978 Isolated Invariant Sets and the Morse Index (CBMS Regional Conference Series in Mathematics vol 38) (RI: American Mathematical Society Providence)) for groups in compact metric spaces (see also Rybakowski (1987 The Homotopy Index and Partial Differential Equations (Universitext) (Berlin: Springer)) for the Morse decomposition of an invariant set for a semigroup on a compact metric space).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the existence of pullback attractors for evolution processes. Our aim is to provide results that extend the following results for autonomous evolution processes (semigroups) (i) An autonomous evolution process which is bounded, dissipative and asymptotically compact has a global attractor. (ii) An autonomous evolution process which is bounded, point dissipative and asymptotically compact has a global attractor. The extension of such results requires the introduction of new concepts and brings up some important differences between the asymptotic properties of autonomous and non-autonomous evolution processes. An application to damped wave problem with non-autonomous damping is considered. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by the theory of semigroups of growth a, we construct an evolution process of growth alpha. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that. under natural assumptions. a reasonable concept of solution can be given to Such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Holder continuous functions and to a parabolic problem in a domain Omega subset of R(n) with a one dimensional handle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we prove new results concerning the existence and various properties of an evolution system U(A+B)(t, s)0 <= s <= t <= T generated by the sum -(A(t) + B(t)) of two linear, time-dependent, and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing L(B) for the algebra of all linear bounded operators on B, we can express U(A+B)(t, s)0 <= s <= t <= T as the strong limit in C(8) of a product of the holomorphic contraction semigroups generated by -A (t) and - B(t), respectively, thereby proving a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t) + B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND(t is an element of)[0,T] D(A(t) + B(t)) everywhere dense in B. We obtain a special case of our formula when B(t) = 0, which, in effect, allows us to reconstruct U(A)(t, s)0 <=(s)<=(t)<=(T) very simply in terms of the semigroup generated by -A(t). We then illustrate our results by considering various examples of nonautonomous parabolic initial-boundary value problems, including one related to the theory of timedependent singular perturbations of self-adjoint operators. We finally mention what we think remains an open problem for the corresponding equations of Schrodinger type in quantum mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article dedicated to Professor V. Lakshmikantham on the occasion of the celebration of his 84th birthday, we announce new results concerning the existence and various properties of an evolution system UA+B(t, s)(0 <= s <= t <= T) generated by the sum -(A(t)+B(t)) of two linear, time-dependent and generally unbounded operators defined on time-dependent domains in a complex and separable Banach space B. In particular, writing G(B) for the algebra of all linear bounded operators on B, we can express UA+B(t, s)(0 <= s <= t <= T) as the strong limit in L(B) of a product of the holomorphic contraction semigroups generated by -A(t) and -B(t), thereby getting a product formula of the Trotter-Kato type under very general conditions which allow the domain D(A(t)+B(t)) to evolve with time provided there exists a fixed set D subset of boolean AND D-t epsilon[0,D-T](A(t)+B(t)) everywhere dense in B. We then mention several possible applications of our product formula to various classes of non-autonomous parabolic initial-boundary value problems, as well as to evolution problems of Schrodinger type related to the theory of time-dependent singular perturbations of self-adjoint operators in quantum mechanics. We defer all the proofs and all the details of the applications to a separate publication. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a twisted partial action e of a group G on an (associative non-necessarily unital) algebra A over a commutative unital ring k, the crossed product A x(Theta) G is proved to be associative. Given a G-graded k-algebra B = circle plus(g is an element of G) B-g with the mild restriction of homogeneous non-degeneracy, a criteria is established for B to be isomorphic to the crossed product B-1 x(Theta) G for some twisted partial action of G on B-1. The equality BgBg-1 B-g = B-g (for all g is an element of G) is one of the ingredients of the criteria, and if it holds and, moreover, B has enough local units, then it is shown that B is stably isomorphic to a crossed product by a twisted partial action of G. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under p = c, we prove that it is possible to endow the free abelian group of cardinality c with a group topology that makes its square countably compact. This answers a question posed by Madariaga-Garcia and Tomita and by Tkachenko. We also prove that there exists a Wallace semigroup (i.e., a countably compact both-sided cancellative topological semigroup which is not a topological group) whose square is countably compact. This answers a question posed by Grant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1996, Jespers and Wang classified finite semigroups whose integral semigroup ring has finitely many units. In a recent paper, Iwaki-Juriaans-Souza Filho continued this line of research by partially classifying the finite semigroups whose rational semigroup algebra contains a Z-order with hyperbolic unit group. In this paper, we complete this classification and give an easy proof that deals with all finite semigroups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concept of a partial projective representation of a group is introduced and studied. The interaction with partial actions is explored. It is shown that the factor sets of partial projective representations over a field K are exactly the K-valued twistings of crossed products by partial actions. (C) 2009 Elsevier B.V. All rights reserved.