16 resultados para Símbolos de fe
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The abundance of heavy r-elements may provide a better understanding of the r-process, and the determination of several reference r-elements should allow a better determination of a star`s age. The space UV region (lambda < 3000 angstrom) presents a large number of lines of the heavy elements, and in the case of some elements, such as Bi, Pt, Au, detectable lines are not available elsewhere. The extreme ""r-process star"" CS 31082-001 ([Fe/H] = -2.9) was observed in the space UV to determine abundances of the heaviest stable elements, using STIS on board Hubble Space Telescope.
Resumo:
Paleomagnetic and rockmagnetic data are reported for the Floresta Formation (Santa Fe Group) of the Sanfranciscana Basin, central Brazil. This formation represents the Permo-Carboniferous glacial record of the basin and comprises the Brocoto (diamictites and flow diamictites), Brejo do Arroz (red sandstones and shales with dropstones and invertebrate trails), and Lavado (red sandstones) members, which crop out near the cities of Santa Fe de Minas and Canabrava, Minas Gerais State. Both Brejo do Arroz and Lavado members were sampled in the vicinities of the two localities. Alternating field and thermal demagnetizations of 268 samples from 76 sites revealed reversed components of magnetization in all samples in accordance with the Permo-Carboniferous Reversed Superchron. The magnetic carriers are magnetite and hematite with both minerals exhibiting the same magnetization component, suggesting a primary origin for the remanence. We use the high-quality paleomagnetic pole for the Santa Fe Group (330.9 degrees E 65.7 degrees S; N = 60; alpha(95) = 4.1 degrees; k = 21) in a revised late Carboniferous to early Triassic apparent polar wander path for South America. On the basis of this result it is shown that an early Permian Pangea A-type fit is possible if better determined paleomagnetic poles become available.
Resumo:
Diabetic individuals are more susceptible to infections and this seems to be related to impaired phagocyte function. Alveolar macrophages (AMs) are the first barrier to prevent respiratory infections Leukotrienes (LTs) increase AM phagocytic activity via Fc gamma R. In this study, we compared AMs from diabetic and nondiabetic rats for phagocytosis via Fc gamma R and the roles of LTs and insulin Diabetes was induced in male Wistar rats by alloxan (42 mg/kg, i.v); macrophages were obtained by bronchoalveolar lavage and IgG-opsonised sheep red blood cells (IgG-SRBC) were used as targets. LTs were added to the AMs 5 min before the addition of IgG-SRBC. AMs were treated with a LT synthesis inhibitor (zileuton, 10 mu M), or antagonists of the LTB(4) receptor (CP105 696, 10 mu M) cys-LT receptor (MK571, 10 mu M), 30 or 20 min before the addition of IgG-SRBC, respectively. We found that the phagocytosis of IgG-SRBC by AMs from diabetic rats is impaired compared with non-diabetic rats. Treatment with the LT inhibitor/antagonists significantly reduced AM phagocytosis in non-diabetic but not diabetic rats. During the phagocytosis of IgG-SRBC LTB(4) and LTC(4) were produced by AMs from both groups. The addition of exogenous LTB(4) or LTD(4) potentiated phagocytosis similarly in both groups Phagocytosis was followed by the phosphorylation of PKC-delta. ERK and Akt This was reduced by zileuton treatment in AMs from non-diabetic but not diabetic rats The addition of insulin to AMs further increased the phagocytosis by increasing PKC-delta phosphorylation These results suggest that the impaired phagocytosis found in AMs from diabetic rats is related to a deficient coupling of LTs to the Fc gamma R signaling cascade and that insulin has a key role in this coupling An essential role for insulin in Innate immunity is suggested (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the formation of ferrihydrite nanoparticles (NPs) by hydrolysis of the Fe(III) alkoxide Fe(O(t)Bu)(3). Controlled amounts of water, up to 3.0 vol%, were added to the precursor solution yielding a series of hydrolyzed samples ranging from P0.0 (the unreacted precursor) to P3.0. X-ray diffraction (XRD) analysis evidenced the formation of high-crystalline ferrihydrite NP in sample P3.0, with grain size estimate of about 3.2 nm. The transition from the molecular precursor to the formation of crystalline magnetic NPs was followed through magnetization measurements M(T) and M(H), as well as Mossbauer spectroscopy (MS). M(T) measurements indicate a paramagnetic (PM) behavior for sample P0.0, characteristic of binuclear Fe-O-Fe units, which evolves to a superparamagnetic (SPM) behavior, with an energy barrier for the blocking process estimated for sample P3.0 as E(a) = 4.9 x 10(-21) J (E(a)/k(B) = 355 K), resulting in a high effective anisotropy constant K(eff) = 290 kJ/m(3). Magnetization loops at 5 K progressively change from PM-like to ferromagnetic-like shape upon increasing the hydrolysis process, although hysteresis (H(c) approximate to 500 Oe) only is apparent for P2.0 and higher. MS spectra at room temperature are PM/SPM doublets for all samples, while the MS spectra at T = 4.2 K reveal increasingly well-defined magnetic ordering as hydrolysis of the precursor stepwise progresses until well-crystallized ferrihydrite particles are formed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The structural, electronic and magnetic properties of Fe and Ti atomic wires and the complete covering when adsorbed on graphene are presented through ab initio calculations based on density functional theory. The most stable configurations are investigated for Fe and Ti in different concentrations adsorbed on the graphene surface, and the corresponding binding energies are calculated. The results show a tendency of the Ti atoms to cover uniformly the graphene surface, whereas the Fe atoms form clusters. The adsorption of the transition metal on the graphene surface changes significantly the electronic density of states near the graphene Fermi region. In all arrangements studied, a charge transfer is observed from the adsorbed species to the graphene surface due to the high hybridizations between the systems.
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction (XRD) reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H (c) = 12.5 kOe and (BH)(max) = 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains (diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. The microstructure is discussed in terms of a calculation by Skomski and Coey. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a poorly coupled sample. The FORC diagrams show two strong peaks for both the poorly coupled sample and for the well-coupled material. In both cases, the localization of the FORC probability suggests magnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure.
Resumo:
Ribbons of nominal composition (Pr(9.5)Fe(84.5)B(6))(0.96)Cr(0.01)(TiC)(0.03) were produced by arc-melting and melt-spinning the alloys on a Cu wheel. X-ray diffraction reveals two main phases, one based upon alpha-Fe and the other upon Pr(2)Fe(14)B. The ribbons show exchange spring behavior with H(c)=12.5 kOe and (BH)(max)= 13.6 MGOe when these two phases are well coupled. Transmission electron microscopy revealed that the coupled behavior is observed when the microstructure consists predominantly of alpha-Fe grains(diameter similar to 100 nm.) surrounded by hard material containing Pr(2)Fe(14)B. A first-order-reversal-curve (FORC) analysis was performed for both a well-coupled sample and a partially-coupled sample. The FORC diagrams show two strong peaks for both the partially-coupled sample and for the well coupled material. In both cases, the localization of the FORC probability suggests demagnetizing interactions between particles. Switching field distributions were calculated and are consistent with the sample microstructure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Fe-Al-Mo system has been calculated via a truncated cluster expansion, through the combination of Full-Potential-Linear augmented Plane Wave (FP-LAPW) electronic structure calculations and of Cluster Variation Method (CVM) thermodynamic calculations in the irregular tetrahedron approximation. Four isothermal sections at 1750 K, 2000 K, 2250 K and 2500 K are calculated and correlated with recently published experimental data on the system. The results confirm that the critical temperature for the order-disorder equilibrium between Fe(3)Al-D0(3) and FeAl-B2 is increased by Mo additions, while the critical temperature for the FeAl-B2/A2 equilibrium is kept approximately invariant with increasing Mo contents. The stabilization of the Al-rich A2 phase in equilibrium with overstoichiometric B2-(Fe,Mo)Al is also consistent with the attribution of the A2 structure to the tau(2) phase, stable at high temperatures in overstoichiometric B2-FeAl. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.
Resumo:
We report interparticle interactions effects on the magnetic structure of the surface region in Fe(3)O(4) nanoparticles. For that, we have studied a desirable system composed by Fe(3)O(4) nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (similar to 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.
Resumo:
The addition of both Ti-C and Cr as grain refiners in Nd-Fe-B nanocomposites substantially increases the coercive field Hc. This motived our investigation of the effect of Ti-C and Cr on Pr-Fe-B nanocomposites. Melt-spun ribbons of composition (Pr(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0; 0.25; 0.5; 0.75; 1) and (Nd(9.5)Fe(84.5)B(6))(0.97-x)Cr(x)(TiC)(0.03)(x = 0.5 and 1) were produced for study. For a Pr nanocomposite with 1% Cr, Hc = 12.5 kOe. However, the energy product was limited to 13.6 MGOe by the remanence value. Rietveld analysis of X-ray spectra showed the ribbons to consist of predominantly hard (similar to 70 wt%) R(2)Fe(14)B, the soft phase being (similar to 30 wt%) alpha-Fe. Mossbauer measurements at 300 K are consistent with a reduced hyperfine field for the hard magnetic phase due to the Cr addition. Analysis of transmission electron microscopy images showed the Pr nanocomposite with 1% Cr to have an increased average grain size.
Resumo:
We have studied the magnetic and power absorption properties of a series of magnetic nanoparticles (MNPs) of Fe(3)O(4) with average sizes < d > ranging from 3 to 26 rim. Heating experiments as a function of particle size revealed a strong increase in the specific power absorption (SPA) values for particles with < d > = 25-30 mn. On the other side saturation magnetization M(s) values of these MNPs remain essentially constant for particles with < d > above 10 rim, suggesting that the absorption mechanism is not determined by Ms. The largest SPA value obtained was 130 W/g, corresponding to a bimodal particle distribution with average size values of 17 and 26 nm.
Resumo:
Zinc oxide is a widely used white inorganic pigment. Transition metal ions are used as chromophores and originate the ceramic pigments group. In this context, ZnO particles doped with Co, Fe, and V were synthesized by the polymeric precursors method, Pechini method. Differential scanning calorimetry (DSC) and thermogravimetry (TG) techniques were used to accurately characterize the distinct thermal events occurring during synthesis. The TG and DSC results revealed a series of decomposition temperatures due to different exothermal events, which were identified as H(2)O elimination, organic compounds degradation and phase formation. The samples were structurally characterized by X-Ray diffractometry revealing the formation of single phase, corresponding to the crystalline matrix of ZnO. The samples were optically characterized by diffuse reflectance measurements and colorimetric coordinates L*, a*, b* were calculated for the pigment powders. The pigment powders presented a variety of colors ranging from white (ZnO), green (Zn(0.97)Co(0.03)O), yellow (Zn(0.97)Fe(0.03)O), and beige (Zn(0.97)V(0.03)O).