13 resultados para Retrograde tracers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Lactation is an energy-demanding process characterized by massive food and water consumption, cessation of the reproductive cycle and induction of maternal behavior. During lactation, melanin-concentrating hormone (MCH) mRNA and peptide expression are increased in the medial preoptic area (MPO) and in the anterior paraventricular nucleus of the hypothalamus. Here we show that MCH neurons in the MPO coexpress the GABA synthesizing enzyme GAD-67 mRNA. We also show that MCH neurons in the MPO of female rats are innervated by neuropeptides that control energy homeostasis including agouti-related protein (AgRP), alpha-melanocyte stimulating hormone (alpha MSH) and cocaine- and amphetamine-regulated transcript (CART). Most of these inputs originate from the arcuate nucleus neurons. Additionally, using injections of retrograde tracers we found that CART neurons in the ventral premammillary nucleus also innervate the MPO. We then assessed the projections of the female MPO using injections of anterograde tracers. The MPO densely innervates hypothalamic nuclei related to reproductive control including the anteroventral periventricular nucleus, the ventrolateral subdivision of the ventromedial nucleus (VMHvl) and the ventral premammillary nucleus (PMV). We found that the density of MCH-ir fibers is increased in the VMHvl and PMV during lactation. Our findings suggest that the expression of MCH in the MPO may be induced by changing levels of neuropeptides involved in metabolic control. These MCH/GABA neurons may, in turn, participate in the suppression of cyclic reproductive function and/or sexual behavior during lactation through projections to reproductive control sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The lateral hypothalamic area (LHA) participates in the integration of sensory information and somatomotor responses associated with hunger and thirst. Although the LHA is neurochemically heterogeneous, a particularly high number of cells express melanin-concentrating hormone (MCH), which has been reported to play a role in energy homeostasis. Treatment with MCH increases food intake, and MCH mRNA is overexpressed in leptin-deficient (ob/ob) mice. Mice lacking both MCH and leptin present reduced body fat, mainly due to increased resting energy expenditure and locomotor activity. Dense MCH innervation of the cerebral motor cortex (MCx) and the pedunculopontine tegmental nucleus (PPT), both related to motor function, has been reported. Therefore, we postulated that a specific group of MCH neurons project to these areas. To investigate our hypothesis, we injected retrograde tracers into the MCx and the PPT of rats, combined with immunohistochemistry. We found that 25% of the LHA neurons projecting to the PPT were immunoreactive for MCH, and that 75% of the LHA neurons projecting to the MCx also contained MCH. Few MCH neurons were found to send collaterals to both areas. We also found that 15% of the incerto-hypothalamic neurons projecting to the PPT expressed MCH immunoreactivity. Those neurons preferentially innervated the rostral PPT. In addition, we observed that the MCH neurons express glutamic acid decarboxylase mRNA, a gamma-aminobutyric acid (GABA) synthesizing enzyme. We postulate that MCH/GABA neurons are involved in the inhibitory modulation of the innervated areas, decreasing motor activity in states of negative energy balance. (C) 2007 Published by Elsevier B.V.
Resumo:
Combined fluid inclusion (FI) microthermometry, Raman spectroscopy, X-ray diffraction, C-O-H isotopes and oxygen fugacities of granulites from central Ribeira Fold Belt, SE Brazil, provided the following results: i) Magnetite-Hematite fO(2) estimates range from 10(-11.5) bar (QFM + 1) to 10(-18.3) bar (QFM - 1) for the temperature range of 896 degrees C-656 degrees C, implying fO(2) decrease from metamorphic peak temperatures to retrograde conditions; ii) 5 main types of fluid inclusions were observed: a) CO(2) and CO(2)-N(2) (0-11 mol%) high to medium density (1.01-0.59 g/cm(3)) FI; b) CO(2) and CO(2)-N(2) (0-36 mol%) low density (0.19-0.29 g/cm(3)) FI; c) CO(2) (94-95 mol%)-N(2) (3 mol%)-CH(4) (2-3 mol%)-H(2)O (water phi(v) (25 degrees C) = 0.1) FI; d) low-salinity H(2)O-CO(2) FI; and e) late low-salinity H(2)O FI; iii) Raman analyses evidence two graphite types in khondalites: an early highly ordered graphite (T similar to 450 degrees C) overgrown by a disordered kind (T similar to 330 degrees C); iv) delta(18)O quartz results of 10.3-10.7 parts per thousand, imply high-temperature CO(2) delta(18)O values of 14.4-14.8 parts per thousand, suggesting the involvement of a metamorphic fluid, whereas lower temperature biotite delta(18)O and delta D results of 7.5-8.5 parts per thousand and -54 to -67 parts per thousand respectively imply H(2)O delta(18)O values of 10-11 parts per thousand and delta D(H2O) of -23 to -36 parts per thousand suggesting delta(18)O depletion and increasing fluid/rock ratio from metamorphic peak to retrograde conditions. Isotopic results are compatible with low-temperature H(2)O influx and fO(2) decrease that promoted graphite deposition in retrograde granulites, simultaneous with low density CO(2), CO(2)-N(2) and CO(2)-N(2)-CH(4)-H(2)O fluid inclusions at T = 450-330 degrees C. Graphite delta(13)C results of -10.9 to -11.4 parts per thousand imply CO(2) delta(13)C values of -0.8 to -1.3 parts per thousand suggesting decarbonation of Cambrian marine carbonates with small admixture of lighter biogenic or mantle derived fluids. Based on these results, it is suggested that metamorphic fluids from the central segment of Ribeira Fold Belt evolved to CO(2)-N(2) fluids during granulitic metamorphism at high fO(2), followed by rapid pressure drop at T similar to 400-450 degrees C during late exhumation that caused fO(2) reduction induced by temperature decrease and water influx, turning carbonic fluids into CO(2)-H(2)O (depleting biotite delta(18)O and delta D values), and progressively into H(2)O. When fO(2) decreased substantially by mixture of carbonic and aqueous fluids, graphite deposited forming khondalites. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We present a map of the spiral structure of the Galaxy, as traced by molecular carbon monosulphide (CS) emission associated with IRAS sources which are believed to be compact H II regions. The CS line velocities are used to determine the kinematic distances of the sources in order to investigate their distribution in the galactic plane. This allows us to use 870 objects to trace the arms, a number larger than that of previous studies based on classical H II regions. The distance ambiguity of the kinematic distances, when it exists, is solved by different procedures, including the latitude distribution and an analysis of the longitude-velocity diagram. The study of the spiral structure is complemented with other tracers: open clusters, Cepheids, methanol masers and H II regions. The well-defined spiral arms are seen to be confined inside the corotation radius, as is often the case in spiral galaxies. We identify a square-shaped sub-structure in the CS map with that predicted by stellar orbits at the 4:1 resonance (four epicycle oscillations in one turn around the galactic centre). The sub-structure is found at the expected radius, based on the known pattern rotation speed and epicycle frequency curve. An inner arm presents an end with strong inwards curvature and intense star formation that we tentatively associate with the region where this arm surrounds the extremity of the bar, as seen in many barred galaxies. Finally, a new arm with concave curvature is found in the Sagitta to Cepheus region of the sky. The observed arms are interpreted in terms of perturbations similar to grooves in the gravitational potential of the disc, produced by crowding of stellar orbits.
Resumo:
The determination of accurate chemical abundances of planetary nebulae (PN) in different galaxies allows us to obtain important constraints on chemical evolution models for these systems. We have a long-term program to derive abundances in the galaxies of the Local Group, particularly the Large and Small Magellanic Clouds. In this work, we present our new results on these objects and discuss their implications in view of recent abundance determinations in the literature. In particular, we obtain distance-independent correlations involving He, N, O, Ne, S, and Ar, and compare the results with data from our own Galaxy and other galaxies in the Local Group. As a result of our observational program, we have a large database of PN in the Galaxy and the Magellanic Clouds, so that we can obtain reliable constraints on the nucleosynthesis processes in the progenitor stars in galaxies of different metallicities.
Resumo:
The basolateral amygdala complex (BLA) is involved in acquisition of contextual and auditory fear conditioning. However, the BLA is not a single structure but comprises a group of nuclei, including the lateral (LA), basal (BA) and accessory basal (AB) nuclei. While it is consensual that the LA is critical for auditory fear conditioning, there is controversy on the participation of the BA in fear conditioning. Hodological and neurophysiological findings suggest that each of these nuclei processes distinct information in parallel; the BA would deal with polymodal or contextual representations, and the LA would process unimodal or elemental representations. Thus, it seems plausible to hypothesize that the BA is required for contextual, but not auditory, fear conditioning. This hypothesis was evaluated in Wistar rats submitted to multiple-site ibotenate-induced damage restricted to the BA and then exposed to a concurrent contextual and auditory fear conditioning training followed by separated contextual and auditory conditioning testing. Differing from electrolytic lesion and lidocaine inactivation, this surgical approach does not disturb fibers of passage originating in other brain areas, restricting damage to the aimed nucleus. Relative to the sham-operated controls, rats with selective damage to the BA exhibited disruption of performance in the contextual, but not the auditory, component of the task. Thus, while the BA seems required for contextual fear conditioning, it is not critical for both an auditory-US association, nor for the expression of the freezing response. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The prefrontal cortex (PFC) receives strong inputs from monoaminergic cell groups in the brainstem and also sends projections to these nuclei. Recent evidence suggests that the PFC exerts a powerful top-down control over the dorsal raphe nucleus (DR) and that it may be involved in the actions of pharmaceutical drugs and drugs of abuse. In the light of these findings, the precise origin of prefrontal inputs to DR was presently investigated by using the cholera toxin subunit b (CTb) as retrograde tracer. All the injections placed in DR produced retrograde labeling in the medial, orbital, and lateral divisions of the PFC as well as in the medial part of the frontal polar cortex. The labeling was primarily located in layer V. Remarkably, labeling in the medial PFC was denser in its ventral part (infralimbic and ventral prelimbic cortices) than in its dorsal part (dorsal prelimbic, anterior cingulate and medial precentral cortices). After injections in the rostral or caudal DR, the largest number of labeled neurons was observed in the medial PFC, whereas after injections in the mid-rostrocaudal DR, the labeled neurons were more homogeneously distributed in the three main PFC divisions. A cluster of labeled neurons also was observed around the apex of the rostral pole of the accumbens, especially after rostral and mid-rostrocaudal DR injections. Overall, these results confirm the existence of robust preftontal projections to DR, mainly derived from the ventral part of the medial PFC, and underscore a substantial contribution of the frontal polar cortex. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The chemical and dimensional stability associated with suitable fracture toughness and propitious tribological characteristics make silicon nitride-based ceramics potential candidates for biomedical applications, mainly as orthopedic implants. Considering this combination of properties, silicon nitride components were investigated in relation to their biocompatibility. For this study, two cylindrical implants were installed in each tibia of five rabbits and were kept in the animals for 8 weeks. During the healing time, tissue tracers were administrated in the animals so as to evaluate the bone growth around the implants. Eight weeks after the surgery, the animals were euthanized and histological analyses were performed. No adverse reactions were observed close to the implant. The osteogenesis process occurred during the entire period defined by the tracers. However, this process occurred more intensely 4 weeks after the surgery. In addition, the histological analyses showed that bone growth occurred preferentially in the cortical areas. Different kinds of tissue were identified on the implant surface, characterized by lamellar bone tissue containing osteocytes and osteons, by a noncalcified matrix containing osteoblasts, or by the presence of collagen III, which may change to collagen I or remain as a fibrous tissue. The results demonstrated that silicon nitride obtained according to the procedure proposed in this research is a biocompatible material. (c) 2007 Wiley Periodicals, Inc.
Resumo:
We studied the P-T-t evolution of a mid-crustal igneous-metamorphic segment of the Famatinian Belt in the eastern sector of the Sierra de Velasco during its exhumation to the upper crust. Thermobarometric and geochronological methods combined with field observations permit us to distinguish three tectonic levels. The deepest Level I is represented by metasedimentary xenoliths and characterized by prograde isobaric heating at 20-25 km depth. Early/Middle Ordovician granites that contain xenoliths of Level I intruded in the shallower Level II. The latter is characterized by migmatization coeval with granitic intrusions and a retrograde isobaric cooling P-T path at 14-18 km depth. Level II was exhumed to the shallowest supracrustal Level III, where it was intruded by cordierite-bearing granites during the Middle/Late Ordovician and its host-rock was locally affected by high temperature-low pressure HT/LP metamorphism at 8-10 km depth. Level III was eventually intruded by Early Carboniferous granites after long-term slow exhumation to 6-7 km depth. Early/Middle Ordovician exhumation of Level II to Level III (Exhumation Period I,0.25-0.78 mm/yr) was faster than exhumation of Level III from the Middle/Late Ordovician to the Lower Carboniferous (Exhumation Period II, 0.01-0.09 mm/yr). Slow exhumation rates and the lack of regional evidence of tectonic exhumation suggest that erosion was the main exhumation mechanism of the Famatinian Belt. Widespread slow exhumation associated with crustal thickening under a HT regime suggests that the Famatinian Belt represents the middle crust of an ancient Altiplano-Puna-like orogen. This thermally weakened over-thickened Famatinian crust was slowly exhumed mainly by erosion during similar to 180 Myr. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Pseudosections, geothermobarometric estimates and careful petrographic observations of gneissic migmatites and granulites from Neoproterozoic central Ribeira Fold Belt (SE Brazil) were performed in order to quantify the metamorphic P-T conditions during prograde and retrograde evolution of the Brasiliano Orogeny. Results establish a prograde metamorphic trajectory from amphibolite facies conditions to metamorphic peak (T = 850 +/- 50 A degrees C; P = 8 +/- 1 kbar) that promoted widespread dehydrationmelting of 30 to 40% of the gneisses and high-grade granitization. After the metamorphic peak, migmatites evolved with cooling and decompression to T a parts per thousand 500 A degrees C and P a parts per thousand 5 kbar coupled with aH2O increase, replacing the high-grade paragenesis plagioclase-quartz-K-feldspar-garnet by quartz-biotite-sillimanite-(muscovite). Cordierite absence, microtextural observations and P-T results constrain the migmatite metamorphic evolution in the pseudosections as a clockwise P-T path with retrograde cooling and decompression. High-temperature conditions further dehydrated the lower crust with biotite and amphibole-dehydration melting and granulite formation coupled with 10% melt generation. Granulites can thus be envisaged as middle to lower crust dehydrated restites. Granulites were slowly (nearly isobarically) cooled, followed by late exhumation/retrograde rapid decompression and cooling, reflecting a two step P-T path. This retrograde evolution, coupled with water influx, chemically reequilibrated the rocks from granulite to amphibolite/greenschist facies, promoting the replacement of the plagioclase-quartz-garnet-hypersthene peak assemblage by quartz-biotite- K-feldspar symplectites.
Resumo:
In the surroundings of Caldas and El Retiro cities (Colombia) metamorphic rocks derived from basic and pelitic protoliths comprise the Caldas amphibole schist and the Ancon schist respectively. Subordinated metamorphosed granite bodies (La Miel gneiss) are associated to these units, and The El Retiro amphibolites, migmatites and granulites crops out eastwards of these units, separated by shear zones. The Caldas amphibole schist and the Ancon schist protoliths could have been formed in a distal marine reduced environment and amalgamated to the South American continent in an apparent Triassic subduction event. The El Retiro rocks are akin to a continental basement and possible include impure metasediments of continental margin, whose metamorphism originated granulite facies rocks and migmatites as a result of the anatexis of quartz-feldspathic rocks. The metamorphism was accompanied by intense deformation, which has juxtaposed both migmatites and granulite blocks. Afterward, heat and fluid circulation associated with the emplacement of minor igneous intrusions resulted in intense fluid-rock interaction, variations in the grain size of the minerals and, especially, intense retrograde metamorphic re-equilibrium. Thermobarometric estimations for the Caldas amphibole schist indicate metamorphism in the Barrovian amphibolite fades. The metamorphic path is counter-clockwise, but retrograde evolution could not be precisely defined. The pressures of the metamorphism in these rocks range from 6.3 to 13.5 kbar, with narrow temperature ranging from 550 to 630 degrees C. For the Ancon schist metapelites the P-T path is also counter-clockwise, with a temperature increase evidenced by the occurrence of sillimanite and the cooling by later kyanite. The progressive metamorphism event occurred at pressures of 7.6-7.2 kbar and temperatures of 645-635 degrees C for one sample and temperature between 500 and 600 degrees C under constant pressure of 6 kbar. The temperature estimated for these rocks varies between 400 and 555 degrees C at pressures of 5-6 kbar in the retrograde metamorphic path. The El Retiro rocks evidence strong decompression with narrow variation in temperature, showing pressure values between 8.7 and 2.7 kbar at temperatures of 740-633 degrees C. These metamorphic fragments of the basement in the Central Cordillera of the Colombian Andes could represent a close relationship with an antique subduction zone. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The metamorphosed banded iron formation from the Nogoli Metamorphic Complex of western Sierra de San Luis, Eastern Sierras Pampeanas of Argentina (Nogoli area, 32 degrees 55`S-66 degrees 15`W) is classified as an oxide facies iron formation of Algoma Type, with a tectonic setting possibly associated with an island arc or back arc, on the basis of field mapping, mineral and textural arrangements and whole rock geochemical features. The origin of banded iron formation is mainly related to chemical precipitation of hydrogenous sediments from seawater in oceanic environments. The primary chemical precipitate is a result of solutions that represent mixtures of seawater and hydrothermal fluids, with significant dilution by maficultramafic volcanic and siliciclastic materials. Multi-stage T(DM) model ages of 1670, 1854 and 1939 Ma and positive, mantle-like xi Nd((1502)) values of +3.8, +1.5 and +0.5 from the banded iron formation are around the range of those mafic to ultramafic meta-volcanic rocks of Nogoli Metamorphic Complex, which are between 1679 and 1765 Ma and +2.64 and +3.68, respectively. This Sm and Nd isotopic connection suggests a close genetic relationship between ferruginous and mafic-ultramafic meta-volcanic rocks, as part of the same island arc or back arc setting. A previous Sm-Nd whole rock isochron of similar to 1.5 Ga performed on mafic-ultramafic meta-volcanic rocks led to the interpretation that chemical sedimentation as old as Mesoproterozoic is possible for the banded iron formation. A clockwise P-T path can be inferred for the regional metamorphic evolution of the banded iron formation, with three distinctive trajectories: (1) Relict prograde M(1)-M(3) segment with gradual P and T increase from greenschist facies at M(1) to amphibolite facies at M(3). (2) Peak P-T conditions at high amphibolite-low granulite facies during M(4). (3) Retrograde counterpart of M(4), that returns from amphibolite facies and stabilizes at greenschist facies during M(5). Each trajectory may be regarded as produced by different tectonic events related to the Pampean? (1) and the Famatinian (2 and 3) orogenies, during the Early to Middle Paleozoic. The Nogoli Metamorphic Complex is interpreted as part of a greenstone belt within the large Meso- to Neoproterozoic Pampean Terrane of the Eastern Sierras Pampeanas of Argentina. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study was conducted at three sites of different characteristics in Sao Paulo State Sao Paulo (SPA), Piracicaba (PRB) and Mate Atlantica Forest (MAT) PM(10), n-alkanes. pristane and phytane, PAHs, water-soluble ions and biomass burning tracers like levoglucosan and retene, were determined in quartz fiber filters. Samplings occurred on May 8th to August 8th, 2007 at the MAT site; on August 15th to 29th in 2007 and November 10th to 29th in 2008 at the PRB site and, March 13th to April 4th in 2007 and August 7th to 29th in 2008 at the SPA site Aliphatic compounds emitted biogenically were less abundant at the urban sites than at the forest site, and its distribution showed the influence of tropical vascular plants Air mass transport front biomass burning regions is likely to impact the sites with specific molecular markers The concentrations of all species were variable and dependent of seasonal changes In the most dry and polluted seasons, n-alkane and canon total concentrations were similar between the megacity and the biomass burning site PAHs and inorganic ion abundances were higher at Sao Paulo than Piracicaba, yet, the site influenced by biomass burning seems lobe the most impacted by the organic anion abundance in the atmosphere Pristane and phytane confirm the contamination by petroleum residues at urban sites, at the MAT site, biological activity and long range transport of pollutants might influence the levels of pristane (C) 2010 Elsevier B V All rights reserved