23 resultados para Resonance Fluorescence-spectrum

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction between angiotensin II (AII, DRVYIHPF) and its analogs carrying 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) and detergents-negatively charged sodium dodecyl sulfate (SDS) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS)-was examined by means of EPR, CD, and fluorescence. EPR spectra of partially active TOAC(1)-AII and inactive TOAC(3)-AII in aqueous solution indicated fast tumbling, the freedom of motion being greater at the N-terminus. Line broadening occurred upon interaction with micelles. Below SDS critical micelle concentration, broader lines indicated complex formation with tighter molecular packing than in micelles. Small changes in hyperfine splittings evinced TOAC location at the micelle-water interface. The interaction with anionic micelles was more effective than with zwitterionic micelles. Peptide-micelle interaction caused fluorescence increase. The TOAC-promoted intramolecular fluorescence quenching was more, pronounced for TOAC(3)-AII because of the proximity between the nitroxide and Tyr(4). CD spectra showed that although both AII and TOAC(1)-AII presented flexible conformations in water, TOAC(3)-AII displayed conformational restriction because of the TOAC-imposed bend (Schreier et al., Biopolymers 2004, 74, 389). In HPS, conformational changes were observed for the labeled peptides at neutral and basic pH. In SDS, all peptides underwent pH-dependent conformational changes. Although the spectra suggested similar folds for All and TOAC(1)-AII, different conformations were acquired by TOAC(3)-AII. The membrane environment has been hypothesized to shift conformational equilibria so as to stabilize the receptor-bound conformation of ligands. The fact that TOAC(3)-AII is unable to acquire conformations similar to those of native AII and partially active TOAC(1)-AII is probably the explanation for its lack of biological activity. (C) 2009 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 92: 525-537, 2009.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigated the effects of photodynamic therapy (PDT) outcome when combining three laser systems that produce light in three different wavelengths (600, 630, and 660 nm). Cooperative as well as independent effects can be observed. We compared the results of the combined wavelengths of light with the effect of single laser for the excitation of the photosensitizer. In the current experiment, the used photosensitizer was Photogem (R) (1.5 mg/kg). Combining two wavelengths for PDT, their cumulative dose and different penetrability may change the overall effect of the fluence of light, which can be effective for increasing the depth of necrosis. This evaluation was performed by comparing the depth and specific aspect of necrosis obtained by using single and dual wavelengths for irradiation of healthy liver of male Wistar rats. We used 15 animals and divided them in five groups of three animals. First, Photogem (R) was administered; follow by measurement of the fluorescence spectrum of the liver before PDT to confirm the level of accumulation of photosensitizer in the tissue. After that, an area of 1 cm(2) of the liver was illuminated using different laser combinations. Qualitative analysis of the necrosis was carried out through histological and morphological study. [GRAPHICS] (a) - microscopic images of rat liver cells, (b) - superficial necrosis caused by PDT using dual-wavelength illumination, (c) - neutrophilic infiltration around the vessel inside the necrosis, and (d) - neutrophilic infiltration around the vessel between necrosis and live tissue (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The evaluation of graft function at various stages after transplantation is relevant, particularly at the moment of organ harvest, when a decision must be made whether to use the organ. Autofluorescence spectroscopy is noninvasive technique to monitor the metabolic condition of a liver graft throughout its course, from an initial evaluation in the donor, through cold ischemia transportation, to reperfusion and reoxygenation in the recipient. Preliminary results are presented in six liver transplantations spanning the periods from liver harvest to implant. The laser-induced fluorescence spectrum at 532-mn excitation was investigated before cold perfusion (autofluorescence), during cold ischemia, at the back table procedure, as well as 5 and 60 minutes after reperfusion. The results showed that the fluorescence analysis was sensitive to changes during the transplantation procedure. Fluorescence spectroscopy potentially provides a real-time, noninvasive technique to monitor liver graft function. The information could potentially be valuable for surgical decisions and transplant success.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the photodegradation of three different chlorine photosensitizers (Photoditazine (R), Radachlorin (R), and Foscan (R)). The photosensitizer degradation was analyzed by changes in the fluorescence spectrum during illumination. The rate of fluorescence variation was normalized to the solution absorption and the photon energy resulting in the determination of the necessary number of photons to be absorbed to induce photosensitizer photodegradation. The parameter for rate of the molecules decay, the photon fluence rate and optical properties of the solution allow us to determine the photosensitizer stability in solution during illumination. The results show that the order of susceptibility for photodegradation rate is: Radachlorin (R) < Photoditazine (R) < Foscan (R). This difference in the photodegradation rate for Foscan can be explained by the high proportion of aggregates in solution that inhibit the photo-oxidative process that impede the singlet oxygen formation. We hypothesize that there is a correlation between photodegradation rate and photodynamic efficacy witch is governed by the singlet oxygen formation responsible for the most relevant reaction of the cell death photodynamic induction. Then its is important to know the photostability of different types of drugs since the photodegradation rate, the photodegradation as well as the photodynamic efficacy are strong correlated to the oxygen concentration in the tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proteins have been considered important targets for reactive oxygen species. Indeed, tryptophan (W) has been shown to be a highly susceptible amino acid to many oxidizing agents, including singlet molecular oxygen [O-2 ((1)Delta(g))]. In this study, two cis- and trans-tryptophan hydroperoxide (WOOH) isomers were completely characterized by HPLC/mass spectrometry and NMR analyses as the major W-oxidation photoproducts. These photoproducts underwent thermal decay into the corresponding alcohols. Additionally, WOOHs were shown to decompose under heating or basification, leading to the formation of N-formylkynurenine (FMK). Using O-18-labeled hydroperoxides ((WOOH)-O-18-O-18), it was possible to confirm the formation of two oxygen-labeled FMK molecules derived from (WOOH)-O-18-O-18 decomposition. This result demonstrates that both oxygen atoms in FMK are derived from the hydroperoxide group. In addition, these reactions are chemiluminescent (CL), indicating a dioxetane cleavage pathway. This mechanism was confirmed since the CL spectrum of the WOOH decomposition matched the FMK fluorescence spectrum, unequivocally identifying FMK as the emitting species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground state thermal neutron cross section and the resonance integral for the (165)Ho(n, gamma)(166)Ho reaction in thermal and 1/E regions, respectively, of a thermal reactor neutron spectrum have been measured experimentally by activation technique. The reaction product, (166)Ho in the ground state, is gaining considerable importance as a therapeutic radionuclide and precisely measured data of the reaction are of significance from the fundamental point of view as well as for application. In this work, the spectrographically pure holmium oxide (Ho(2)O(3)) powder samples were irradiated with and without cadmium covers at the IEA-RI reactor (IPEN, Sao Paulo), Brazil. The deviation of the neutron spectrum shape from 1/E law was measured by co-irradiating Co, Zn, Zr and Au activation detectors with thermal and epithermal neutrons followed by regression and iterative procedures. The magnitudes of the discrepancies that can occur in measurements made with the ideal 1/E law considerations in the epithermal range were studied. The measured thermal neutron cross section at the Maxwellian averaged thermal energy of 0.0253 eV is 59.0 +/- 2.1 b and for the resonance integral 657 +/- 36b. The results are measured with good precision and indicated a consistency trend to resolve the discrepant status of the literature data. The results are compared with the values in main libraries such as ENDF/B-VII, JEF-2.2 and JENDL-3.2, and with other measurements in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CaYAl(3)O(7):Eu(3+) phosphor was prepared at furnace temperatures as low as 550A degrees C by a solution combustion method. The formation of crystalline CaYAl(3)O(7):Eu(3+) was confirmed by powder X-Ray diffraction pattern. The prepared phosphor was characterized by SEM, FT-IR and photoluminescence techniques. Photoluminescence measurements indicated that emission spectrum is dominated by the red peak located at 618 nm due to the (5)D(0)-(7)F(2) electric dipole transition of Eu(3+) ions. Electron Spin Resonance (ESR) studies were carried out to identify the centres responsible for the thermoluminescence (TL) peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0126 is identified as an O(-) ion while centre II with an isotropic g-factor 2.0060 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F(+) centre appears to correlate with the observed high temperature TL peak in CaYAl(3)O(7):Eu(3+) phosphor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Europium-doped lanthanum aluminate (LaAlO(3)) powder was prepared by using a combustion method. The crystallization, surface morphology, specific surface area and luminescence properties of the samples have been investigated. Photoluminescence studies of Eu doped LaAlO(3) showed orange-reddish emission due to Eu(3+) ions. LaAlO(3):Eu(3+) exhibits one thermally stimulated luminescence (TSL) peak around 400 degrees C. Room temperature electron spin resonance spectrum of irradiated phosphor appears to be a superposition of two centres. One of them (centre I) with principal g-value 2.017 is identified as an O(-) centre while centre II with an isotropic g-value 2.011 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre observed during thermal annealing around 300 degrees C grows with the annealing temperature. This centre (assigned to F(+) centre) originates from an F-centre (oxygen vacancy with two electrons) and the F-centre along with the associated F(+) centre appear to correlate with the observed TSL peak in LaAlO(3):Eu(3+) phosphor. The activation energy for this peak has been determined to be 1.54 eV from TSL data. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicate mineral hemimorphite has been investigated concerning its TL, IR and EPR properties. A broad TL peak around 180 degrees C and a weaker and narrower peak around 360 degrees C were found in a sample annealed at 600 degrees C for I h and then irradiated. The deconvolution using the CGCD method revealed peaks around 132, 169, 222 and 367 degrees C. The reflectivity measurements showed several bands in the NIR region due to H(2)O, OH and Al-OH complexes. No band was observed in the visible region. The thermal treatments were carried out from similar to 110 to 940 degrees C and dehydration was observed, first causing a diminishing optical absorption in general and the disappearance of water and hydroxyl absorption bands. The EPR spectrum of natural hemimorphite, presented Cu(2+) signals at g = 2.4 and g = 2.1 plus E(1)` signal superposed to Fe(3+) signal around g = 2.0. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermoluminescence, electron paramagnetic resonance and optical absorption properties of rhodonite, a natural silicate mineral, have been investigated and compared to those of synthetic crystal, pure and doped. The TL peaks grow linearly for radiation dose up to 4 kGy, and then saturate. In all the synthetic samples, 140 and 340 degrees C TL peaks are observed; the difference occurs in their relative intensities, but only 340 degrees C peak grows strongly for high doses. Al(2)O(3) and Al(2)O(3) + CaO-doped synthetic samples presented several decades intenser TL compared to that of synthetic samples doped with other impurities. A heating rate of 4 degrees C/s has been used in all the TL readings. The EPR spectrum of natural rhodonite mineral has only one huge signal around g = 2.0 with width extending from 1,000 to 6,000 G. This is due to Mn dipolar interaction, a fact proved by numerical calculation based on Van Vleck dipolar broadening expression. The optical absorption spectrum is rich in absorption bands in near-UV, visible and near-IR intervals. Several bands in the region from 540 to 340 nm are interpreted as being due to Mn(3+) in distorted octahedral environment. A broad and intense band around 1,040 nm is due to Fe(2+). It decays under heating up to 900 degrees C. At this temperature it is reduced by 80% of its original intensity. The pink, natural rhodonite, heated in air starts becoming black at approximately 600 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work demonstrates that the detuning of the fs-laser spectrum from the two-photon absorption band of organic materials can be used to reach further control of the two-photon absorption by pulse spectral phase manipulation. We investigate the coherent control of the two-photon absorption in imidazole-thiophene core compounds presenting distinct two-photon absorption spectra. The coherent control, performed using pulse phase shaping and genetic algorithm, exhibited different growth rates for each sample. Such distinct trends were explained by calculating the two-photon absorption probability considering the intrapulse interference mechanism, taking into account the two-photon absorption spectrum of the samples. Our results indicate that tuning the relative position between the nonlinear absorption and the pulse spectrum can be used as a novel strategy to optimize the two-photon absorption in broadband molecular systems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new polymeric zinc(II) complex with thiophene-2-carboxylic acid (-tpc) of composition [Zn2(C20H12O8S4)]n was obtained and structurally characterized by X-ray diffraction, thermal analysis, nuclear magnetic resonance (NMR), and infrared spectroscopies. Upfield shift in the 1H-NMR spectrum is explained by the crystalline structure, which shows the thiophene rings overlapping each other in parallel pairs. The compound crystallizes in the monoclinic system, space group P21/c, with a = 9.7074(4) angstrom, b = 13.5227(3) angstrom, c = 18.9735(7) angstrom, = 95.797(10)degrees, and Z = 4. Three -tpc groups bridge between two Zn(II) ions through oxygens and the fourth one bridges between one of these ions and the third one, symmetry related by a twofold screw axis. This arrangement gives rise to infinite chains along the crystallographic a direction. The metal atoms display an approximate tetrahedral configuration. The complex is insoluble in water, ethanol, and acetone, but soluble in dimethyl sulfoxide.