16 resultados para Repressed-ucs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+) and recurrent head and neck squamous cell carcinoma (HNSCC) may increase our understanding of the complex biology of this disease. Methods: Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative) or tumor recurrence (recurrent or non-recurrent tumor) after treatment (surgery with neck dissection followed by radiotherapy). Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results: The most frequent alterations were the repression of modules in negative lymph node (N0) and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions: The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway, specially apoptosis and interactions between tumor cells and the stroma.
Resumo:
A synthetic version of the metal-regulated gene A (mrgA) promoter from Bacillus subtilis, which in this Gram-positive bacterium is negatively regulated by manganese, iron, cobalt, or copper turned out to promote high level of basal gene expression that is further enhanced by Co(II), Cd(II), Mn(II), Zn(II), Cu(II), or Ni(II), when cloned in the Gram-negative bacterium Cupriavidus metallidurans. Promoter activity was monitored by expression of the reporter gene coding for the enhanced green fluorescent protein (EGFP), and cellular intensity fluorescence was quantified by flow cytometry. Expression levels in C. metallidurans driven by the heterologous promoter, here called pan, ranged from 20- to 53-fold the expression level driven by the Escherichia coli lac promoter (which is constitutively expressed in C. metallidurans), whether in the absence or presence of metal ions, respectively. The pan promoter did also function in E. coli in a constitutive pattern, regardless of the presence of Mn(II) or Fe(II). In conclusion, the pan promoter proved to be a powerful tool to express heterologous proteins in Gram-negative bacteria, especially in C. metallidurans grown upon high levels of toxic metals, with potential applications in bioremediation. Biotechnol. Bioeng. 2010; 107: 469-477. (C) 2010 Wiley Periodicals, Inc.
Resumo:
The opportunistic pathogen Pseudomonas aeruginosa PA14 possesses four fimbrial cup clusters, which may confer the ability to adapt to different environments. cupD lies in the pathogenicity island PAPI-1 next to genes coding for a putative phosphorelay system composed of the hybrid histidine kinase RcsC and the response regulator RcsB. The main focus of this work was the regulation of cupD at the mRNA level. It was found that the HN-S-like protein MvaT does not exert a strong influence on cupD transcript levels, as it does for cupA. cupD transcription is higher in cultures grown at 28 degrees C, which agrees with a cupD mutant presenting attenuated virulence only in a plant model, but not in a mouse model of infection. Whereas an rcsC in-frame deletion mutant presented higher levels of cupD mRNA, rcsB deletion had the opposite effect. Accordingly, overexpression of RcsB increased the levels of cupD transcription, and promoted biofilm formation and the appearance of fimbriae. A single transcription start site was determined for cupD and transcription from this site was induced by RcsB. A motif similar to the enterobacterial RcsB/RcsA-binding site was detected adjacent to the -35 region, suggesting that this could be the RcsB-binding site. Comparison of P. aeruginosa and Escherichia coli Rcs may provide insights into how similar systems can be used by different bacteria to control gene expression and to adapt to various environmental conditions.
Resumo:
The pathogenic fungus Fusarium graminearum is an ongoing threat to agriculture, causing losses in grain yield and quality in diverse crops. Substantial progress has been made in the identification of genes involved in the suppression of phytopathogens by antagonistic microorganisms; however, limited information regarding responses of plant pathogens to these biocontrol agents is available. Gene expression analysis was used to identify differentially expressed transcripts of the fungal plant pathogen F. graminearum under antagonistic effect of the bacterium Pantoea agglomerans. A macroarray was constructed, using 1014 transcripts from an F. graminearum cDNA library. Probes consisted of the cDNA of F. graminearum grown in the presence and in the absence of P. agglomerans. Twenty-nine genes were either up (19) or down (10) regulated during interaction with the antagonist bacterium. Genes encoding proteins associated with fungal defense and/or virulence or with nutritional and oxidative stress responses were induced. The repressed genes coded for a zinc finger protein associated with cell division, proteins containing cellular signaling domains, respiratory chain proteins, and chaperone-type proteins. These data give molecular and biochemical evidence of response of F. graminearum to an antagonist and could help develop effective biocontrol procedures for pathogenic plant fungi.
Resumo:
Drosophila pair-rule genes are expressed in striped patterns with a precise order of overlap between stripes of different genes. We investigated the role of Giant (Gt) in the regulation of even-skipped, hairy, runt, and fushi tarazu stripes formed in the vicinity of Gt expression domains. In gt null embryos, specific stripes of eve, h, run, and ftz are disrupted. With an ectopic expression system, we verified that stripes affected in the mutant are also repressed. Simultaneously hybridizing gt misxpressing embryos with two pair-rule gene probes, we were able to distinguish differences in the repression of pairs of stripes that overlap extensively. Together, our results showed Gt repression roles in the regulation of two groups of partially overlapping stripes and that Gt morphogen activity is part of the mechanism responsible for the differential positioning of these stripes borders. We discuss the possibility that other factors regulate Gt stripe targets as well. Developmental Dynamics 239:2989-2999, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Aims: The main objective of this study was to evaluate the behaviour of the brown-rot fungus Wolfiporia cocos under differential iron availability. Methods and Results: W. cocos was grown under three differential iron conditions. Growth, catecholate and hydroxamate production, and mycelial and extracellular Fe3+-reducing activities were determined. Iron starvation slowed fungal growth and accelerated pH decline. Some mycelial proteins of low molecular weight were repressed under iron restriction, whereas others of high molecular weight showed positive iron regulation. Mycelial ferrireductase activity decreased as culture aged, while Fe3+-reducing activity of low molecular reductants constantly increased. Hydroxamates production suffered only limited iron repression, whereas catecholates production showed to be more iron repressible. Conclusions: W. cocos seems to possess more than one type of iron acquisition mechanism; one involving secretion of organic acids and ferrireductases and/or extracellular reductants, and another relying on secretion of catecholates and hydroxamates chelators. Significance and Impact of the Study: This paper is the first to report the kinetic study of brown-rot fungus grown under differential iron availability, and the information provided here contributes to address more traditional problems in protecting wood from brown decay, and also makes a contribution in the general area of the physiology of brown-rot fungi.
Resumo:
Microbial xylanolytic enzymes have a promising biotechnological potential, and are extensively applied in industries. In this study, induction of xylanolytic activity was examined in Aspergillus phoenicis. Xylanase activity induced by xylan, xylose or beta-methylxyloside was predominantly extracellular (93-97%). Addition of 1% glucose to media supplemented with xylan or xylose repressed xylanase production. Glucose repression was alleviated by addition of cAMP or dibutyryl-cAMP. These physiological observations were supported by a Northern analysis using part of the xylanase gene ApXLN as a probe. Gene transcription was shown to be induced by xylan, xylose, and beta-methylxyloside, and was repressed by the addition of 1% glucose. Glucose repression was partially relieved by addition of cAMP or dibutyryl cAMP.
Resumo:
Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dl1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dl1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.
Resumo:
Pires-Oliveira M, Maragno AL, Parreiras-E-Silva LT, Chiavegatti T, Gomes MD, Godinho RO. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J Appl Physiol 108: 266-273, 2010. First published November 19, 2009; doi:10.1152/japplphysiol.00490.2009.-Skeletal muscle atrophy induced by denervation and metabolic diseases has been associated with increased ubiquitin ligase expression. In the present study, we evaluate the influence of androgens on muscle ubiquitin ligases atrogin-1/MAFbx/FBXO32 and Murf-1/Trim63 expression and its correlation with maintenance of muscle mass by using the testosterone-dependent fast-twitch levator ani muscle (LA) from normal or castrated adult male Wistar rats. Gene expression was determined by qRT-PCR and/or immunoblotting. Castration induced progressive loss of LA mass (30% of control, 90 days) and an exponential decrease of LA cytoplasm-to-nucleus ratio (nuclear domain; 22% of control after 60 days). Testosterone deprivation induced a 31-fold increase in LA atrogin-1 mRNA and an 18-fold increase in Murf-1 mRNA detected after 2 and 7 days of castration, respectively. Acute (24 h) testosterone administration fully repressed atrogin-1 and Murf-1 mRNA expression to control levels. Atrogin-1 protein was also increased by castration up to 170% after 30 days. Testosterone administration for 7 days restored atrogin-1 protein to control levels. In addition to the well known stimulus of protein synthesis, our results show that testosterone maintains muscle mass by repressing ubiquitin ligases, indicating that inhibition of ubiquitin-proteasome catabolic system is critical for trophic action of androgens in skeletal muscle. Besides, since neither castration nor androgen treatment had any effect on weight or ubiquitin ligases mRNA levels of extensor digitorum longus muscle, a fast-twitch muscle with low androgen sensitivity, our study shows that perineal muscle LA is a suitable in vivo model to evaluate regulation of muscle proteolysis, closely resembling human muscle responsiveness to androgens.
Resumo:
The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Patients presenting with active Systemic lupus erythematosus (SLE) manifestations may exhibit distinct pathogenetic features in relation to inactive SLE. Also, cDNA microarrays may potentially discriminate the gene expression profile of a disease or disease variant. Therefore, we evaluated the expression profile of 4500 genes in peripheral blood lymphocytes (PBL) of SLE patients. We studied 11 patients with SLE (seven with active SLE and four with inactive SLE) and eight healthy controls. Total RNA was isolated from PBL, reverse transcribed into cDNA, and postlabeled with Cy3 fluorochrome. These probes were then hybridized to a glass slide cDNA microarray containing 4500 human IMAGE cDNA target sequences. An equimolar amount of total RNA from human cell lines served as reference. The microarray images were quantified, normalized, and analyzed using the R environment (ANOVA, significant analysis of microarrays, and cluster-tree view algorithms). Disease activity was assessed by the SLE disease activity index. Compared to the healthy controls, 104 genes in active SLE patients (80 repressed and 24 induced) and 52 genes in nonactive SLE patients (31 induced and 21 repressed) were differentially expressed. The modulation of 12 genes, either induced or repressed, was found in both disease variants; however, each disease variant had differential expression of different genes. Taken together, these results indicate that the two lupus variants studied have common and unique differentially expressed genes. Although the biological significance of the differentially expressed genes discussed above has not been completely understood, they may serve as a platform to further explore the molecular basis of immune deregulation in SLE.
Resumo:
The MHC region (6p21) aggregates the major genes that contribute to susceptibility to type 1 diabetes (T1D). Three additional relevant susceptibility regions mapped on chromosomes 1p13 (PTPN22), 2q33 (CTLA-4), and 11p15 (insulin) have also been described by linkage studies. To evaluate the contribution of these susceptibility regions and the chromosomes that house these regions, we performed a large-scale differential gene expression on lymphomononuclear cells of recently diagnosed T1D patients, pinpointing relevant modulated genes clustered in these regions and their respective chromosomes. A total of 4608 cDNAs from the IMAGE library were spotted onto glass slides using robotic technology. Statistical analysis was carried out using the SAM program, and data regarding gene location and biological function were obtained at the SOURCE, NCBI, and FATIGO programs. Three induced genes were observed spanning around the MHC region (6p21-6p23), and seven modulated genes (5 repressed and 2 repressed) were seen spanning around the 6q21-24 region. Additional modulated genes were observed in and around the 1p13, 2q33, and 11p15 regions. Overall, modulated genes in these regions were primarily associated with cellular metabolism, transcription factors and signaling transduction. The differential gene expression characterization may identify new genes potentially involved with diabetes pathogenesis.
Resumo:
Large, long-lived species experience more lifetime cell divisions and hence a greater risk of spontaneous tumor formation than smaller, short-lived species. Large, long-lived species are thus expected to evolve more elaborate tumor suppressor systems. In previous work, we showed that telomerase activity coevolves with body mass, but not lifespan, in rodents: telomerase activity is repressed in the somatic tissues of large rodent species but remains active in small ones. Without telomerase activity, the telomeres of replicating cells become progressively shorter until, at some critical length, cells stop dividing. Our findings therefore suggested that repression of telomerase activity mitigates the increased risk of cancer in larger-bodied species but not necessarily longer-lived ones. These findings imply that other tumor suppressor mechanisms must mitigate increased cancer risk in long-lived species. Here, we examined the proliferation of fibroblasts from 15 rodent species with diverse body sizes and lifespans. We show that, consistent with repressed telomerase activity, fibroblasts from large rodents undergo replicative senescence accompanied by telomere shortening and overexpression of p16(Ink4a) and p21(Cip1/Waf1) cycline-dependent kinase inhibitors. Interestingly, small rodents with different lifespans show a striking difference: cells from small shorter-lived species display continuous rapid proliferation, whereas cells from small long-lived species display continuous slow proliferation. We hypothesize that cells of small long-lived rodents, lacking replicative senescence, have evolved alternative tumor-suppressor mechanisms that prevent inappropriate cell division in vivo and slow cell growth in vitro. Thus, large-bodied species and small but long-lived species have evolved distinct tumor suppressor mechanisms.
Resumo:
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO(2)]. The effects of increased [CO(2)] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane (Saccharum ssp.). Plants were grown at ambient (similar to 370 ppm) and elevated (similar to 720 ppm) [CO(2)] during 50 weeks in open-top chambers. The plants grown under elevated CO(2) showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO(2)]. These plants also had lower stomatal conductance and transpiration rates (-37 and -32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO(2). The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO(2)], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.
Resumo:
sigma(S) is responsible for the transcriptional regulation of genes related to protection against stresses and bacterial survival and it accumulates in the cell under conditions of stress, such as nutrient limitation. An increase in the levels of sigma(S) causes a reduction in the expression of genes that are transcribed by RNA polymerase associated with the principal sigma factor, sigma(70). phoA, that encodes alkaline phosphatase (AP) is expressed under phosphate shortage conditions, and is also repressed by sigma(S). Here we show that in a Pi-limited chemostat, accumulation of rpoS mutations is proportional to the intrinsic level of sigma(S) in the cells. Acquisition of mutations in rpoS relieves repression of the PHO genes. We also devised a non-destructive method based on the rpoS effect on AP that differentiates between rpo(S+) and rpoS mutants, as well as between high and low-sigma(S) producers. Using this method, we provide evidence that sigma(S) contributes to the repression of AP under conditions of Pi excess and that AP variation among different strains is at least partly due to intrinsic variation in sigma(S) levels. Consequently, a simple and non-destructive AP assay can be employed to differentiate between strains expressing different levels of sigma(S) on agar plates.