15 resultados para Red Cross and Red Crescent
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
BACKGROUND: Chloroform, ethyl acetate and methanol extracts of a sample of red propolis from the state of Alagoas (northeast Brazil) were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Antimicrobial and antioxidant activities were also obtained. RESULTS: The propolis sample contained low content of narigenin-8-C-hexoside, this being the first report of a C-glycoside in propolis. The main constituent found was characterized as 3,4,2`,3`-tetrahydroxychalcone. Other important constituents were the chalcone isoliquiritigenin, the isoflavans (3S)-vestitol, (3S)-7-O-methylvestitol, the pterocarpan medicarpin, the phenylpropenes trans-anethol, methyl eugenol, elimicin, methoxyeugenol and cis-asarone, and the triterpenic alcohols lupeol and alpha- and beta- amyrins. The methanol extract exhibited high antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl and beta-carotene/linoleic acid assay methods, and antimicrobial activity toward Gram-positive and Gram-negative bacteria. CONCLUSION: Structures are suggested for new substances never before seen in any kind of propolis. This is the first report of 3,4,2`,3`-tetrahydroxychalcone and a flavone C-glycoside in a propolis sample. (C) 2011 Society of Chemical Industry
Resumo:
Species of Gracilaria are some of the most useful algae in the world for the production of agar. As a consequence of its economic importance, the genus has been the subject of many studies worldwide. Color variants of Gracilaria birdiae have been found in the natural population on the Brazilian coast, and they have also been isolated from plants cultivated in laboratory. These findings raised new questions regarding intraspecific variation and the prospects of cultivating such variants for their agar production. Therefore, this work aimed to determine the mode of color inheritance for two G. birdiae strains: a greenish-brown strain (gb) found in a natural population and a green strain (gr) which had arisen as a spontaneous mutation in a red plant cultured in the laboratory. The pigment contents of these strains, as well as the red wildtype (rd), were also characterized. Crosses between female and male plants of the same color (rd, gr, or gb) and between different colors were performed. Crosses between plants of the same color showed tetrasporophytic and gametophytic descendents of the parental color. Recessive nuclear inheritance was found in the greenish-brown strain, and cytoplasmic maternal inheritance was found in the green strain; both had lower phycoerythrin and higher concentrations of allophycocyanin and phycocyanin than the wild-type. Chlorophyll a contents were similar among all strains. Taken together, our results contribute to knowledge about the variability of this important red algae. In addition, since greenish-brown and green strains showed stability of color, both could be selected and tested in experimental sea cultivation to evaluate if mutants have advantageous performance when compared with red strain.
Resumo:
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.
Resumo:
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Resumo:
Inflammatory cytokines such as interieukin-1 beta (IL-1 beta) are involved in the pathogenesis of periodontal diseases. A high individual variation in the levels of IL-10 mRNA has been verified, which is possibly determined by genetic polymorphisms and/or by the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Aggregatibacter actinomycetemcomitans. In this study, we investigated the role of an IL-10 promoter single-nucleotide polymorphism at position 3954 [IL-1 beta(3954) SNP] and the presence of the periodontopathogens in the determination of the IL-1 beta levels in the periodontal tissues of nonsmoking chronic periodontitis (CP) patients (n = 117) and control (C) subjects in = 175) and the possible correlations with the clinical parameters of the disease. IL-1 beta(3954) SNP was investigated by restriction fragment length polymorphism, while the IL-1 beta levels and the presence of the periodontopathogens were determined by real-time PCR. Similar frequencies of IL-1 beta(3954) SNP were found in the C and CP groups, in spite of a trend toward a higher incidence of T alleles in the CP group. The IL-1 beta (3954) SNP CT and TT genotypes, as well as P. gingivalis, T. forsythia, and T. denticola, were associated with higher IL-1 beta levels and with higher values of the clinical parameters of disease severity. Concomitant analyses demonstrate that IL-1 beta(3954) and the red complex periodontopathogens were found to independently and additively modulate the levels of IL-1 beta in periodontal tissues. Similarly, the concurrent presence of both factors was associated with increased scores of disease severity. IL-1 beta(3954) genotypes and red complex periodontopathogens, individually and additively, modulate the levels of IL-1 beta in the diseased tissues of nonsmoking CP patients and, consequently, are potentially involved in the determination of the disease outcome.
Resumo:
Background and Objective: Inflammatory cytokines such as tumor necrosis factor-alpha are involved in the pathogenesis of periodontal diseases. A high between-subject variation in the level of tumor necrosis factor-alpha mRNA has been verified, which may be a result of genetic polymorphisms and/or the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola (called the red complex) and Aggregatibacter actinomycetemcomitans. In this study, we investigated the effect of the tumor necrosis factor-alpha (TNFA) -308G/A gene polymorphism and of periodontopathogens on the tumor necrosis factor-alpha levels in the periodontal tissues of nonsmoking patients with chronic periodontitis (n = 127) and in control subjects (n = 177). Material and Methods: The TNFA-308G/A single nucleotide polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism analysis, whereas the tumor necrosis factor-alpha levels and the periodontopathogen load were determined using real-time polymerase chain reaction. Results: No statistically significant differences were found in the frequency of the TNFA-308 single nucleotide polymorphism in control and chronic periodontitis groups, in spite of the higher frequency of the A allele in the chronic periodontitis group. The concomitant analyses of genotypes and periodontopathogens demonstrated that TNFA-308 GA/AA genotypes and the red-complex periodontopathogens were independently associated with increased levels of tumor necrosis factor-alpha in periodontal tissues, and no additive effect was seen when both factors were present. P. gingivalis, T. forsythia and T. denticola counts were positively correlated with the level of tumor necrosis factor-alpha. TNFA-308 genotypes were not associated with the periodontopathogen detection odds or with the bacterial load. Conclusion: Our results demonstrate that the TNFA-308 A allele and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased tissues of nonsmoking chronic periodontitis patients and consequently are potentially involved in determining the disease outcome.
Resumo:
Antarctic biodiversity is evolutionarily complex, reflecting the extreme ambient conditions. Therefore, Antarctic organisms exhibit sophisticated adaptations in all organization levels, including organs, tissues, and cells. Since red blood cells (RBCs) travel through the vertebrates blood delivering O(2) to all tissues and organs and purging the unwanted CO(2), they represent an interesting model to investigate biological adaptations. We have used atomic force microscopy (AFM) to compare the shape and size of RBCs of the Pygoscelid penguins. A total of 18 landmarks were measured in AFM images. When analyzed individually, the parameters were not capable of discriminating the RBCs of each species. However, the simultaneous use of multiple parameters discriminated (74%) among the RBCs. In addition, the use of RBC measurements was sufficient to hierarchically cluster the species in accordance to other common and reliable phylogenetic strategies. In light of these results, the use of RBC characters could effectively benefit taxonomic inferences.
Resumo:
CaYAl(3)O(7):Eu(3+) phosphor was prepared at furnace temperatures as low as 550A degrees C by a solution combustion method. The formation of crystalline CaYAl(3)O(7):Eu(3+) was confirmed by powder X-Ray diffraction pattern. The prepared phosphor was characterized by SEM, FT-IR and photoluminescence techniques. Photoluminescence measurements indicated that emission spectrum is dominated by the red peak located at 618 nm due to the (5)D(0)-(7)F(2) electric dipole transition of Eu(3+) ions. Electron Spin Resonance (ESR) studies were carried out to identify the centres responsible for the thermoluminescence (TL) peaks. Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0126 is identified as an O(-) ion while centre II with an isotropic g-factor 2.0060 is assigned to an F(+) centre (singly ionized oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F(+) centre appears to correlate with the observed high temperature TL peak in CaYAl(3)O(7):Eu(3+) phosphor.
Resumo:
In order to consider the photodynamic therapy (PDT) as a clinical treatment for candidosis, it is necessary to know its cytotoxic effect on normal cells and tissues. Therefore, this study evaluated the toxicity of PDT with PhotogemA (R) associated with red light-emitting diode (LED) on L929 and MDPC-23 cell cultures and healthy rat palatal mucosa. In the in vitro experiment, the cells (30000 cells/cm(2)) were seeded in 24-well plates for 48 h, incubated with PhotogemA (R) (50, 100, or 150 mg/l) and either irradiated or not with a red LED source (630 +/- 3 nm; 75 or 100 J/cm(2); 22 mW/cm(2)). Cell metabolism was evaluated by the MTT assay (ANOVA and Dunnet`s post hoc tests; p < 0.05) and cell morphology was examined by scanning electron microscopy. In the in vivo evaluation, PhotogemA (R) (500 mg/l) was applied to the palatal mucosa of Wistar rats during 30 min and exposed to red LED (630 nm) during 20 min (306 J/cm(2)). The palatal mucosa was photographed for macroscopic analysis at 0, 1, 3, and 7 days posttreatment and subjected to histological analysis after sacrifice of the rats. For both cell lines, there was a statistically significant decrease of the mitochondrial activity (90-97%) for all PhotogemA (R) concentrations associated with red LED regardless of the energy density. However, in the in vivo evaluation, the PDT-treated groups presented intact mucosa with normal characteristics both macroscopically and histologically. From these results, it may be concluded that the association of PhotogemA (R) and red LED caused severe toxic effects on normal cell cultures, characterized by the reduction of mitochondrial activity and morphological alterations, but did not cause damage to the rat palatal mucosa in vivo.
Resumo:
Diuron is one of the most commonly found N-phenylurea herbicides in marine/estuarine waters that promotes toxic effects by inhibiting photosynthesis and affecting the production of reactive oxygen species (ROS) in autotrophs. Since photo- and thermoacclimation are also ROS-mediated processes, this work evaluates a hypothetical additive effect of high light (HL) and chilling (12 degrees C) on 50 nM diuron toxicity to the highly-photosynthetically active apices of the red alga Kappaphycus alvarezii. Additive inhibition of photosynthesis was mainly evidenced by significant decreases of quantum yield of photosystem II and electron transfer rates upon co-stressors exposure to diuron-treated algae. Under extreme 12 degrees C/HL/diuron conditions, unexpected lower correlations between H(2)O(2) concentrations in seawater and radical-sensitive protein thiols were concomitantly measured with the highest indexes of photoinhibition (parameter beta). Altogether, these data support the hypothesis that co-stressors chilling/HL additively inhibit photosynthesis in diuron-exposed K. alvarezii but with less involvement of H(2)O(2) in injury effects than with only chilling or HL. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The enzyme nitrate reductase (NR) responsible for the conversion of nitrate to nitrite is considered to be the rate-limiting step in nitrogen assimilation. The economically important marine macroalga Gracilaria tenuistipitata presents a circadian oscillation in NR protein content and activity. In order to identify if the regulation of NR in G. tenuistipitata happens at transcriptional levels, the NR cDNA and gene were sequenced and the NR mRNA expression was studied. Analysis of the sequenced gene revealed absence of introns which is unusual for NR genes. The transcriptional profiling revealed a circadian rhythm for NR; furthermore, a rhythm was observed in constant light condition, suggesting a possible regulation by the biological clock at the mRNA levels for NR in G. tenuistipitata.
Resumo:
Four species of marine benthic algae (Laurencia filiformis, L. intricata, Gracilaria domingensis and G. birdiae) that belong to the phylum Rhodophyta were collected in Espirito Santo State, Brazil and investigated concerning their biochemical composition (fatty acid, total lipid, soluble proteins, amino acid and ash). The total content of lipid (% dry weight) ranged from 1.1% to 6.2%: fatty acid from 0.7% to 1.0%: soluble protein from 4.6% to 18.3%, amino acid from 6.7% to 11.3% and ash from 22.5% to 38.4%. judging from their composition, the four species of algae appear to be potential sources of dietary proteins, amino acids, lipids and essential fatty acids for humans and animals. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Red, blue and green emitting rare earth compounds (RE(3+) = Eu(3+), Gd(3+) and Tb(3+)) containing the benzenetricarboxylate ligands (BTC) [hemimellitic (EMA), trimellitic (TLA) and trimesic (TMA)] were synthesized and characterized by elemental analysis, complexometric titration, X-ray diffraction patterns, thermogravimetric analysis and infrared spectroscopy. The complexes presented the following formula: [RE(EMA)(H(2)O)(2)], [RE(TLA)(H(2)O)(4)] and [RE(TMA)(H(2)O)(G)], except for Tb-TMA compound, which was obtained only as anhydrous. Phosphorescence data of Gd(3+)-(BTC) complexes showed that the triplet states (T) of the BTC(3-) anions have energy higher than the main emitting states of the Eu(3+) ((5)D(0)) and Tb(3+) ((5)D(4)), indicating that BTC ligands can act as intramolecular energy donors for these metal ions. The high values of experimental intensity parameters (Omega(2)) of Eu(3+)-(BTC) complexes indicate that the europium ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the T state of BTC ligands to the excited (5)D(0) and (5)D(4) levels of the Eu(3+) and Tb(3+) ions is discussed. The emission quantum efficiencies (eta) of the (5)D(0) emitting level of the Eu(3+) ion have been also determined. In the case of the Tb(3+) ion, the photoluminescence data show the high emission intensity of the characteristic transitions (5)D(4) -> (7)F(J) (J=0-6), indicating that the BTC ligands are good sensitizers. The RE(3+)-(BTC) complexes act as efficient light conversion molecular devices (LCMDs) and can be used as tricolor luminescent materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Zinc protoporphyrin IX (ZnPP), the major red pigment in hams dry-cured without nitrates/nitrites, is an efficient photosensitizer, which upon absorption of visible light forms short-lived excited singlet state ((1)ZnPP*) and by intersystem crossing yields the very reactive triplet-excited state ((3)ZnPP*). Using nano-second laser flash photolysis and transient absorption spectroscopy NADH, ascorbic acid, hemin and dehydroascorbic acid were each found to be efficient quenchers of (3)ZnPP*. The deactivation followed, in homogeneous dimethyl sulfoxide (DMSO) or DMSO:water (1:1) solutions, second-order kinetics. The rate constant for ascorbic acid and NADH for reductive quenching of (3)ZnPP* was at 25 A degrees C found to be 7.5 +/- A 0.1 x 10(4) L mol(-1) s(-1) and 6.3 +/- A 0.1 x 10(5) L mol(-1) s(-1), respectively. The polyphenols catechin and quercetin had no effect on (3)ZnPP*. The quenching rate constant for oxidative deactivation of (3)ZnPP* by dehydroascorbic acid and hemin was at 25 A degrees C: 1.6 +/- A 0.1 x 10(5) L mol(-1) s(-1) and 1.47 +/- A 0.1 x 10(9) L mol(-1) s(-1), respectively. Oxidized glutathione did not act as an oxidative quencher for (3)ZnPP*. After photoexcitation of ZnPP to (1)ZnPP*, fluorescence was only found to be quenched by the presence of hemin in a diffusion-controlled reaction. The efficient deactivation of (3)ZnPP* and (1)ZnPP* by the metalloporphyrin (hemin) naturally present in meat may accordingly inherently protect meat proteins and lipids against ZnPP photosensitized oxidation.