268 resultados para RNA 5.8S
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In eukaryotes, pre-rRNA processing depends on a large number of nonribosomal trans-acting factors that form intriguingly organized complexes. One of the early stages of pre-rRNA processing includes formation of the two intermediate complexes pre-40S and pre-60S, which then form the mature ribosome subunits. Each of these complexes contains specific pre-rRNAs, ribosomal proteins and processing factors. The yeast nucleolar protein Nop53p has previously been identified in the pre-60S complex and shown to affect pre-rRNA processing by directly binding to 5.8S rRNA, and to interact with Nop17p and Nip7p, which are also involved in this process. Here we show that Nop53p binds 5.8S rRNA co-transcriptionally through its N-terminal region, and that this protein portion can also partially complement growth of the conditional mutant strain Delta nop53/GAL:NOP53. Nop53p interacts with Rrp6p and activates the exosome in vitro. These results indicate that Nop53p may recruit the exosome to 7S pre-rRNA for processing. Consistent with this observation and similar to the observed in exosome mutants, depletion of Nop53p leads to accumulation of polyadenylated pre-rRNAs.
Resumo:
Background: The archaeal exosome is formed by a hexameric RNase PH ring and three RNA binding subunits and has been shown to bind and degrade RNA in vitro. Despite extensive studies on the eukaryotic exosome and on the proteins interacting with this complex, little information is yet available on the identification and function of archaeal exosome regulatory factors. Results: Here, we show that the proteins PaSBDS and PaNip7, which bind preferentially to poly-A and AU-rich RNAs, respectively, affect the Pyrococcus abyssi exosome activity in vitro. PaSBDS inhibits slightly degradation of a poly-rA substrate, while PaNip7 strongly inhibits the degradation of poly-A and poly-AU by the exosome. The exosome inhibition by PaNip7 appears to depend at least partially on its interaction with RNA, since mutants of PaNip7 that no longer bind RNA, inhibit the exosome less strongly. We also show that FITC-labeled PaNip7 associates with the exosome in the absence of substrate RNA. Conclusions: Given the high structural homology between the archaeal and eukaryotic proteins, the effect of archaeal Nip7 and SBDS on the exosome provides a model for an evolutionarily conserved exosome control mechanism.
Resumo:
The yeast nucleolar protein Nop8p has previously been shown to interact with Nip7p and to be required for 60S ribosomal subunit formation. Although depletion of Nop8p in yeast cells leads to premature degradation of rRNAs, the biochemical mechanism responsible for this phenotype is still not known. In this work, we show that the Nop8p amino-terminal region mediates interaction with the 5.8S rRNA, while its carboxyl-terminal portion interacts with Nip7p and can partially complement the growth defect of the conditional mutant strain Dnop8/GAL:NOP8. Interestingly, Nop8p mediates association of Nip7p to pre-ribosomal particles. Nop8p also interacts with the exosome subunit Rrp6p and inhibits the complex activity in vitro, suggesting that the decrease in 60S ribosomal subunit levels detected upon depletion of Nop8p may result from degradation of pre-rRNAs by the exosome. These results strongly indicate that Nop8p may control the exosome function during pre-rRNA processing.
Resumo:
Hammondia heydorni is a cyst forming coccidia closely related to other apicomplexans, such as Toxoplasma gondii, Neospora caninum and Hammondia hammondi with a two-host life cycle. Dogs and other canids as red foxes (Vulpes vulpes) and coyotes (Canis latrans) may serve as definitive hosts for H. heydorni. Sporulated oocysts are infective for cattle, sheep and goats, which may serve as intermediate hosts. Herein, we describe the ability of crab-eating fox (Cerdocyon thous), a wild carnivore that is commonly found from northern Argentina to northern South America, to serve as definitive host of H. heydorni. The whole masseter muscle and brain from two 2-year-old bovines were collected, minced and pooled together for the fox infection. The bovine pooled tissues were equally administered to four foxes, in two consecutive days. Two foxes shed subspherical unsporulated oocysts measuring 10-15 mu m, after 8 and 9 days post-infection, respectively. One of the foxes eliminated oocysts for 5 days, while the other fox shed oocysts for 9 days. A DNA sample of oocysts detected at each day of oocyst elimination was tested by two PCRs, one of them carried out employing primers directed to the common toxoplasmatiid 18S and 5.8S ribosomal RNA coding genes (PCR-ITS1) and the other based on heat-shock protein 70 kDa coding gene (PCR-HSP70). These samples were also submitted to a N. caninum specific nested-PCR protocol based on a N. caninum specific gene (Nc5-nPCR). All of them were positive by PCR-ITS1 and PCR-HSP70 but negative by Nc5-nPCR. The PCR-ITS1 and PCR-HSP70 nucleotide sequences amplified from the oocysts shed by the foxes revealed 100% identity with homologous sequences of H. heydorni. In conclusion, it is clear that H. heydorni also uses the crab-eating fox as a definitive host. The crab-eating fox is usually reported to live in close contact with livestock in several regions of Brazil. Therefore, it is reasonable to infer that such carnivores may play an important role in the sylvatic and domestic cycles of H. heydorni infection. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pathogenicity of strains of the entomopathogenic fungus Beauveria bassiana and endophytic strains of Beauveria sp against the bovine tick Rhipicephalus (Boophilus) microplus was tested in laboratory bioassays and under field conditions. Suspensions containing 10(5), 10(7) and 10(9) conidia/mL were prepared of each fungal strain for laboratory bioassays. The ticks were maintained at 28 degrees C, 90 +/- 5% relative humidity, and the following variables were evaluated: initial female weight, egg weight, hatching percentage, reproductive efficiency, and percentage control. For tests under field conditions, a Beauveria suspension containing 10(6) conidia/mL was sprayed on tick-infested cows. After 72 h, the ticks were collected to estimate mortality under field conditions. Laboratory bioassays showed a mortality of 20 to 50% of the ticks seven days after inoculation with 10(7) Beauveria conidia/mL. Under field conditions 10(6) Beauveria conidia/mL induced 18-32% mortality. All Beauveria strains were effective in biological control of R. (Boophilus) microplus under laboratory and field test conditions. This is the first demonstration that endophytic fungi can be used for biological control of the cattle tick; this could help reduce environmental contamination by diminishing the need for chemical acaricides. Two endophytic strains were isolated from maize leaves and characterized by molecular sequencing of 5.8S rDNA ITS1 and ITS2 and morphological analyses of conidia. We found that these two endophytic Beauveria isolates, designated B95 and B157, are close to Beauveria amorpha.
Resumo:
Endophytic microorganisms reside asymptomatically within plants and are a source of new bioactive products for use in medicine, agriculture, and industry. Colletotrichum (teleomorph Glomerella) is a fungus widely cited in the literature as a producer of antimicrobial substances. Identification at the species level, however, has been a problem in this type of study. Several authors have reported the presence of endophytic fungi from the medicinal plant Maytenus ilicifolia (espinheira-santa) in Brazil that has antimicrobial activity against various pathogens. Therefore, Colletotrichum strains were isolated from M. ilicifolia and identified based on morphology, RAPD markers, sequence data of the internal transcribed spacer regions (ITS-1 and ITS-2), the 5.8S gene, and species-specific PCR. The analyses suggested the presence of 2 species, Colletotrichum gloeosporioides and Colletotrichum boninense. Two morphological markers were characterized to allow C. gloeosporioides and C. boninense to be distinguished quickly and accurately. The molecular diagnosis of C. boninense was confirmed by using Coll and ITS4 primers. This species of Colletotrichum is reported for the first time in M. ilicifolia.
Resumo:
The Fungal Ribosomal Intergenic Spacer Analysis (F-RISA) was used to characterize soil fungal communities from three ecosystems of Araucaria angustifolia from Brazil: a native forest and two replanted forest ecosystems, one of them with a past history of wildfire. The arbuscular mycorrhizal fungi (AMF) infection was evaluated in Araucaria roots of 18-month-old axenic plants previously inoculated with soils collected from those areas in a greenhouse experiment. The principal component analysis of F-RISA profiles showed different soil fungal community between the three studied areas. Sixty three percent of F-RISA fragments amplified in the soil and the substrate samples presented lengths between 500 and 700 bp. The number of Operational Taxonomic Units (OTUs) was 34 for soil and 38 for substrate, however, more fragments were detected in soil (214) than in substrate (163). An in silico F-RISA analysis to compare our data with ITS1-5.8S-ITS2 sequences from NCBI database showed the presence of Ascomycota, Basidiomycota and Glomeromycota among the soil and substrate fungal communities. AMF infection was higher in plants inoculated with soil from the native forest and the replanted forest with wildfire, both presenting similar chemical characteristics but with different disturbance levels. These results indicate that soil chemical composition may influence the soil fungal community structures rather than the anthropogenic or fire disturbances.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
OBJECTIVE: To evaluate the influence of lactic acid on immune mediator release from vaginal epithelial cells. METHODS: The human vaginal epithelial cell line, VK2/E6E7, was cultured in the presence or absence of physiological concentrations of lactic acid, and in the presence or absence of the viral Toll-like receptor 3 agonist, poly (inosinic acid: cytidylic acid). Supernatants were assayed by enzyme-linked immunosorbent assay (ELISA) for interleukin (IL)-1 beta, IL-6, IL-8, IL-23, transforming growth factor (TGF)-beta and secretory leukocyte protease inhibitor. RESULTS: Vaginal epithelial cells spontaneously released IL-1 beta (25.9 pg/mL), IL-8 (1.0 ng/mL), TGF-beta (175 pg/mL), and secretory leukocyte protease inhibitor (33.8 ng/mL). Only TGF-beta production was marginally enhanced (49%) by addition of lactic acid alone. Poly (inosinic acid: cytidylic acid) by itself stimulated the release of IL-6 (305 pg/mL) and enhanced IL-8 production (2.8 ng/mL). The combination of poly (inosinic acid: cytidylic acid) and lactic acid markedly increased IL-8 production (5.0 ng/mL) and induced the release of IL-1 beta (96.2 pg/mL). The poly (inosinic acid: cytidylic acid)-mediated lactic acid effect on IL-1 beta and IL-8 release was abrogated when the lactic acid was neutralized or if acetic acid was substituted for lactic acid. CONCLUSION: Lactic acid enhances the release of selective mediators from vaginal epithelial cells and stimulates antiviral immune responses. (Obstet Gynecol 2011;118:840-6) DOI: 10.1097/AOG.0b013e31822da9e9
Resumo:
Background Mucinous component is associated with distinct clinical and pathological features and poor survival in colorectal cancer. The purpose of this study was to determine differences in outcomes of patients with mucinous colorectal adenocarcinoma according to the type of mucin expressed. Materials and Methods Immunohistochemistry was performed in all tumors of patients who underwent radical surgery between 1998 and 2003 with mucinous colorectal cancer using antibodies against MUC1, 2, and 5. Correlation between immunoexpression and clinical, pathological features and survival was performed. Results Of the 418 patients treated in this period, only 35 had a mucinous adenocarcinoma. Of these, 25 were positive for 1 or more mucin expression. MUC2 expression correlated with tumor site and depth of penetration, while MUC5 expression correlated to tumor site. Overall survival was significantly worse for patients with MUC2 expression, and disease-free survival was significantly worse for patients with MUC1 expression. Conclusions Mucin expression may have significant correlation to specific clinical-pathological features and survival of patients with mucinous-type colorectal adenocarcinoma. These differences may reflect distinct molecular mechanisms involved in carcinogenesis of mucinous colorectal adenocarcinoma.
Resumo:
Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic-like effects in rodents and humans after systemic administration. Previous results from our group showed that CBD injection into the bed nucleus of the stria terminalis (BNST) attenuates conditioned aversive responses. The aim of this study was to further investigate the role of this region on the anxiolytic effects of the CBD. Moreover, considering that CBD can activate 5-HT1A receptors, we also verified a possible involvement of these receptors in those effects. Male Wistar rats received injections of CBD (15, 30, or 60 nmol) into the BNST and were exposed to the elevated plus-maze (EPM) or to the Vogel conflict test (VCT), two widely used animal models of anxiety. CBD increased open arms exploration in the EPM as well as the number of punished licks in the VCT, suggesting an anxiolytic-like effect. The drug did not change the number of entries into the enclosed arms of the EPM nor interfered with water consumption or nociceptive threshold, discarding potential confounding factors in the two tests. Moreover, pretreatment with the 5-HT1A receptor antagonist WAY100635 (0.37 nmol) blocked the effects of CBD in both models. These results give further support to the proposal that BNST is involved in the anxiolytic-like effects of CBD observed after systemic administration, probably by facilitating local 5-HT1A receptor-mediated neurotransmission.
Resumo:
A wealth of evidence suggests a role for brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB) in the aetiology of depression and in the mode of action of antidepressant drugs. Less clear is the involvement of this neurotrophin in other stress-related pathologies such as anxiety disorders. The dorsal periaqueductal grey matter (DPAG), a midbrain area rich in BDNF and TrkB receptor mRNAs and proteins, has been considered a key structure in the pathophysiology of panic disorder. In this study we investigated the effect of intra-DPAG injection of BDNF in a proposed animal model of panic: the escape response evoked by the electrical stimulation of the same midbrain area. To this end, the intensity of electrical current that needed to be applied to DPAG to evoke escape behaviour was measured before and after microinjection of BDNF. We also assessed whether 5-HT- or GABA-related mechanisms may account for the putative behavioural/autonomic effects of the neurotrophin. BDNF (0.05, 0.1, 0.2 ng) dose-dependently inhibited escape performance, suggesting a panicolytic-like effect. Local microinjection of K252a, an antagonist of TrkB receptors, or bicuculline, a GABA(A) receptor antagonist, blocked this effect. Intra-DPAG administration of WAY-100635 or ketanserin, respectively 5-HT(1A) and 5-HT(2A/2c) receptor antagonists, did not alter BDNF`s effects on escape. Bicuculline also blocked the inhibitory effect of BDNF on mean arterial pressure increase caused by electrical stimulation of DPAG. Therefore, in the DPAG, BDNF-TrkB signalling interacts with the GABAergic system to cause a panicolytic-like effect.
Resumo:
Background and purpose: Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT(1A) receptors. As 5-HT(1A) receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT(1A) receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF). Experimental approach: Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg.kg(-1)), imipramine (30 mg.kg(-1)) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg.kg(-1), i.p.), a 5-HT(1A) receptor antagonist, before CBD (30 mg.kg(-1)) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg.kg(-1)) and submitted to the forced swimming test. Key results: CBD (30 mg.kg(-1)) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg.kg(-1)) treatment did not change hippocampal BDNF levels. Conclusion and implications: CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT(1A) receptors. British Journal of Pharmacology (2010) 159, 122-128; doi:10.1111/j.1476-5381.2009.00521.x; published online 4 December 2009
Resumo:
Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. Objective: Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. Design: The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. Results: The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5`-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. Conclusions: We described a novel mutation in the 5`-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function. (J Clin Endocrinol Metab 96: E1100-E1107, 2011)
Resumo:
Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.