177 resultados para RECOMBINANT FACTOR VIII

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this study was to investigate the mechanisms whereby low-intensity laser therapy may affect the severity of oral mucositis. A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil followed by surface irritation. Animals were randomly allocated into three groups and treated with a 35 mW laser, 100 mW laser, or no laser. Clinical severity of mucositis was assessed at four time-points by a blinded examiner. Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. This tissue was used for immunohistochemistry for cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and factor VIII (marker of microvessel density) and the resulting staining was quantified. Peak severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW laser and control groups. This reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a significantly lower level of COX-2 staining. The 100 mW laser did not have an effect on the severity of clinical mucositis, but was associated with a decrease in VEGF levels at the later time-points, as compared to the other groups. There was no clear relationship of VEGF levels or microvessel density to clinical mucositis severity. The tissue response to laser therapy appears to vary by dose. Low-intensity laser therapy appears to reduce the severity of mucositis, at least in part, by reducing COX-2 levels and associated inhibition of the inflammatory response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil`s scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the Sao Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reprogramming of somatic cells to pluripotency promises to boost cellular therapy. Most instances of direct reprogramming have been achieved by forced expression of defined exogenous factors using multiple viral vectors. The most used 4 transcription factors, octamer-binding transcription factor 4 (OCT4), (sex determining region Y)-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and v-myc myelocytomatosis viral oncogene homolog (C-MYC), can induce pluripotency in mouse and human fibroblasts. Here, we report that forced expression of a new combination of transcription factors (T-cell leukemia/lymphoma protein 1A [TCL-1A], C-MYC, and SOX2) is sufficient to promote the reprogramming of human fibroblasts into pluripotent cells. These 3-factor pluripotent cells are similar to human embryonic stem cells in morphology, in the ability to differentiate into cells of the 3 embryonic layers, and at the level of global gene expression. Induced pluripotent human cells generated by a combination of other factors will be of great help for the understanding of reprogramming pathways. This, in turn, will allow us to better control cell-fate and apply this knowledge to cell therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemophilia A is an X-linked, inherited, bleeding disorder caused by the partial or total inactivity of the coagulation factor VIII (FVIII). Due to difficulties in the direct recognition of the disease-associated mutation in the F8 gene, indirect diagnosis using polymorphic markers located inside or close to the gene is used as an alternative for determining the segregation of the mutant gene within families and thus for detecting carrier individuals and/or assisting in prenatal diagnosis. This study characterizes the allelic and haplotype frequencies, genetic diversity, population differentiation and linkage disequilibrium of five microsatellites (F8Int1, F8Int13, F8Int22, F8Int25.3 and IKBKG) in samples of healthy individuals from Sao Paulo, Rio Grande do Sul and Pernambuco and of patients from Sao Paulo with haemophilia A to determine the degree of informativeness of these microsatellites for diagnostic purposes. The interpopulational diversity parameters highlight the differences among the analyzed population samples. Regional differences in allelic frequencies must be taken into account when conducting indirect diagnosis of haemophilia A. With the exception of IKBKG, all of the microsatellites presented high heterozygosity levels. Using the markers described, diagnosis was possible in 10 of 11 families. The F8Int22, F8Int1, F8Int13, F8Int25.3 and IKBKG microsatellites were informative in seven, six, five and two of the cases, respectively, demonstrating the effectiveness of using these microsatellites in prenatal diagnosis and in carrier identification in the Brazilian population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The aim of this study was to evaluate root coverage of gingival recessions and to compare graft vascularization in smokers and non-smokers. Methods: Thirty subjects, 15 smokers and 15 non-smokers, were selected. Each subject had one Miller Class I or II recession in a non-molar tooth. Clinical measurements of probing depth (PD), relative clinical attachment level (CAL), gingival recession (GR), and width of keratinized tissue (KT) were determined at baseline and 3 and 6 months after surgery. The recessions were treated surgically with a coronally positioned flap associated with a subepithelial connective tissue graft. A small portion of this graft was prepared for immunohistochemistry. Blood vessels were identified and counted by expression of factor VIII-related antigen-stained endothelial cells. Results: Intragroup analysis showed that after 6 months there a was gain in CAL, a decrease in GR, and an increase in KT for both groups (P<0.05), whereas changes in PD were not statistically significant. Smokers had less root coverage than non-smokers (58.02% +/- 19.75% versus 83.35% +/- 18.53%; P<0.05). Furthermore, the smokers had more GR (1.48 +/- 0.79 mm versus 0.52 +/- 0.60 mm) than the nonsmokers (P<0.05). Histomorphometry of the donor tissue revealed a blood vessel density of 49.01 +/- 11.91 vessels/200x field for non-smokers and 36.53 +/- 10.23 vessels/200x field for smokers (P<0.05). Conclusion: Root coverage with subepithelial connective tissue graft was negatively affected by smoking, which limited and jeopardized treatment results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose: To evaluate the microvessel density by comparing the performance of anti-factor VIII-related antigen, anti-CD31 and, anti-CD34 monoclonal antibodies in breast cancer. Methods: Twenty-three postmenopausal women diagnosed with Stage II breast cancer submitted to definitive surgical treatment were evaluated. The monoclonal antibodies used were anti-factor VIII, anti-CD31 and anti-CD34. Microvessels were counted in the areas of highest microvessel density in ten random fields (200 x). The data were analyzed using the Kruskal-Wallis nonparametric test (p < 0.05). Results: Mean microvessel densities with anti-factor VIII, anti-CD31 and anti-CD34 were 4.16 +/- 0.38, 4.09 +/- 0.23 and 6.59 +/- 0.42, respectively. Microvessel density as assessed by anti-CD34 was significantly greater than that detected by anti-CD31 or anti-factor VIII (p < 0.0001). There was no statistically significant difference between anti-CD31 and anti-factor VIII (p = 0.4889). Conclusion: The density of stained microvessels was greater and staining was more intense with anti-CD34 compared to anti-CD31 and anti-factor VII-related antigen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contents This study aimed to evaluate the effect of the exogenous recombinant bovine somatotropin (rbST) on plasma concentrations of insulin-like growth factor I (IGF-I), insulin and semen quality of bulls. Twenty bulls (Aberdeen Angus and Brangus) were divided by breed into two groups. Placebo group was injected with NaCl 0.9% (s.c.) and treatment group with rbST (s.c., 500 mg) at days 0 and 14 of the experiment. Immediately after semen collection, blood samples were taken on days 0, 14, 28, 42 and 56 of the experiment. Semen was also collected on day 70 of the experiment. Evaluation of sperm motility was performed at pre-freezing and post-thawing stage, whereas assessment of sperm membrane integrity was performed after freezing and thawing. Analysis of data revealed that the effect of treatment and treatment-by-collection day on plasma concentrations of IGF-I and insulin was not significant. However, mean plasma concentrations of IGF-I and insulin were affected (p < 0.0001) by days of blood sampling. Effect of treatment and treatment-by-collection day on motility of spermatozoa was similar (p > 0.05) at pre-freezing and post-thawing stage. Intactness of plasmalemma and tail membrane of spermatozoa at post-thawing stage was higher (p < 0.05) in rbST-treated group than in control. In conclusion, rbST did not affect plasma concentrations of IGF-I and insulin, however, it did improve post-thaw sperm membrane integrity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recombinant apical membrane antigen 1 (AMA-1) and 19-kDa fragment of merozoite surface protein (MSP-1(19)) are the lead candidates for inclusion in a vaccine against blood stages of malaria due to encouraging protective studies in humans and animals. Despite the importance of an efficacious malaria vaccine, vaccine-related research has focused on identifying antigens that result in protective immunity rather than determining the nature of anti-malarial immune effector mechanisms. Moreover, emphasis has been placed on adaptive rather than innate immune responses. In this study, we investigated the effect of Plasmodium vivax vaccine candidates Pv-AMA-1 and Pv-MSP-1(19) on the immune response of malaria-naive donors. Maturation of dendritic cells is altered by Pv-AMA-1 but not Pv-MSP-1(19), as observed by differential expression of cell surface markers. In addition, Pv-AMA-1 induced an increased production of MIP-1 alpha/CCL3 and decreased production of TARC/CCL17 levels in both dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs). Finally, a significant pro-inflammatory response was elicited by Pv-AMA-1-stimulated PBMCs. These results suggest that the recombinant vaccine candidate Pv-AMA-1 may play a direct role on innate immune response and might be involved in parasite destruction. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Apical Membrane Antigen-1 (AMA-1) is a well-characterized and functionally important merozoite protein and is currently considered a major candidate antigen for a malaria vaccine. Previously, we showed that AMA-1 has an influence on cellular immune responses of malaria-naive subjects, resulting in an alternative activation of monocyte-derived dendritic cells and induction of a pro-inflammatory response by stimulated PBMCs. Although there is evidence, from human and animal malaria model systems that cell-mediated immunity may contribute to both protection and pathogenesis, the knowledge on cellular immune responses in vivax malaria and the factors that may regulate this immunity are poorly understood. In the current work, we describe the maturation of monocyte-derived dendritic cells of P. vivax naturally infected individuals and the effect of P. vivax vaccine candidate Pv-AMA-1 on the immune responses of the same donors. We show that malaria-infected subjects present modulation of DC maturation, demonstrated by a significant decrease in expression of antigen-presenting molecules (CD1a, HLA-ABC and HLA-DR), accessory molecules (CD40, CD80 and CD86) and Fc gamma RI (CD64) receptor (P <= 0.05). Furthermore, Pv-AMA-1 elicits an upregulation of CD1a and HLA-DR molecules on the surface of monocyte-derived dendritic cells (P=0.0356 and P=0.0196, respectively), and it is presented by AMA-1-stimulated DCs. A significant pro-inflammatory response elicited by Pv-AMA-1-pulsed PBMCs is also demonstrated, as determined by significant production of TNF-alpha, IL-12p40 and IFN-gamma (P <= 0.05). Our results suggest that Pv-AMA-1 may partially revert DC down-modulation observed in infected subjects, and exert an important role in the initiation of pro-inflammatory immunity that might contribute substantially to protection. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Genetic factors that influence the response to recombinant human GH (rhGH) therapy remain mostly unknown. To date, only the GH receptor gene has been investigated. Objective: The aim of the study was to assess the influence of a polymorphism in the IGF-binding protein-3 (IGFBP-3) promoter region (-202 A/C) on circulating IGFBP-3 levels and growth response to rhGH therapy in children with GH deficiency (GHD). Design and Patients: -202 A/C IGFBP3 genotyping (rs2854744) was correlated with data of 71 children with severe GHD who remained prepubertal during the first year of rhGH treatment. Main Outcome Measures: We measured IGFBP-3 levels and first year growth velocity (GV) during rhGH treatment. Results: Clinical and laboratory data at the start of treatment were indistinguishable among patients with different -202 A/C IGFBP3 genotypes. Despite similar rhGH doses, patients homozygous for the A allele presented higher IGFBP-3 SD score levels and higher mean GV in the first year of rhGH treatment than patients with AC or CC genotypes (first year GV, AA = 13.0 +/- 2.1 cm/yr, AC = 11.4 +/- 2.5 cm/yr, and CC = 10.8 +/- 1.9 cm/yr; P = 0.016). Multiple linear regression analyses demonstrated that the influence of -202 A/C IGFBP3 genotype on IGFBP-3 levels and GV during the first year of rhGH treatment was independent of other variables. Conclusion: The -202 A allele of IGFBP3 promoter region is associated with increased IGFBP-3 levels and GV during rhGH treatment in prepubertal GHD children. (J Clin Endocrinol Metab 94: 588-595, 2009)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering the potential role of macrophage migration inhibitory factor (MIF) in the inflammation process in placenta when infected by pathogens, we investigated the production of this cytokine in chorionic villous explants obtained from human first-trimester placentas stimulated with soluble antigen from Toxoplasma gondii (STAg). Parallel cultures were performed with villous explants stimulated with STAB, interferon-gamma (IFN-gamma), or STAB plus IFN-gamma. To assess the role of placental MIF on monocyte adhesiveness to human trophoblast, explants were co-cultured with human myelomonocytic THP-1 cells in the presence or absence of supernatant from cultures treated with STAB (SPN), SPN plus anti-MIF antibodies, or recombinant MIF. A significantly higher concentration of MIF was produced and secreted by villous explants treated with STAB or STAB plus IFN-gamma after 24-hour culture. Addition of SPN or recombinant MIF was able to increase THP-1 adhesion, which was inhibited after treatment with anti-MIF antibodies. This phenomenon was associated with intercellular adhesion molecule expression by villous explants. Considering that the processes leading to vertical dissemination of T. gondii remain widely unknown, our results demonstrate that MIF production by human first-trimester placenta is up-regulated by parasite antigen and may play an essential role as an autocrine/paracrine mediator in placental infection by T. gondii.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular mechanism of factor Xa (FXa) inhibition by Alboserpin, the major salivary gland anticoagulant from the mosquito and yellow fever vector Aedes albopictus, has been characterized. cDNA of Alboserpin predicts a 45-kDa protein that belongs to the serpin family of protease inhibitors. Recombinant Alboserpin displays stoichiometric, competitive, reversible and tight binding to FXa (picomolar range). Binding is highly specific and is not detectable for FX, catalytic site-blocked FXa, thrombin, and 12 other enzymes. Alboserpin displays high affinity binding to heparin (K(D) similar to 20 nM), but no change in FXa inhibition was observed in the presence of the cofactor, implying that bridging mechanisms did not take place. Notably, Alboserpin was also found to interact with phosphatidylcholine and phosphatidylethanolamine but not with phosphatidylserine. Further, annexin V (in the absence of Ca(2+)) or heparin outcompetes Alboserpin for binding to phospholipid vesicles, suggesting a common binding site. Consistent with its activity, Alboserpin blocks prothrombinase activity and increases both prothrombin time and activated partial thromboplastin time in vitro or ex vivo. Furthermore, Alboserpin prevents thrombus formation provoked by ferric chloride injury of the carotid artery and increases bleeding in a dose-dependent manner. Alboserpin emerges as an atypical serpin that targets FXa and displays unique phospholipid specificity. It conceivably uses heparin and phosphatidylcholine/phosphatidylethanolamine as anchors to increase protein localization and effective concentration at sites of injury, cell activation, or inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the functional role of nuclear factor-kappa B (NF-kappa B) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappa B (IKB alpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorderof NF-kappa B function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91 degrees CGD). NCF1 gene expression in EDA-ID S321 cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47 degrees) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappa B site 5` to the CYBB gene in U937 cells treated with NF-kappa B inhibitors, repressor-transfected U937 cells, and EDA-ID patients cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappa B repressor. These studies show that NF-kappa B is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.