18 resultados para Prohexadione-Ca
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
IP(3)-dependent Ca(2+) signaling controls a myriad of cellular processes in higher eukaryotes and similar signaling pathways are evolutionarily conserved in Plasmodium, the intracellular parasite that causes malaria. We have reported that isolated, permeabilized Plasmodium chabaudi, releases Ca(2+) upon addition of exogenous IP(3). In the present study, we investigated whether the IP(3) signaling pathway operates in intact Plasmodium falciparum, the major disease-causing human malaria parasite. P. falciparum-infected red blood cells (RBCs) in the trophozoite stage were simultaneously loaded with the Ca(2+) indicator Fluo-4/AM and caged-IP(3). Photolytic release of IP(3) elicited a transient Ca(2+) increase in the cytosol of the intact parasite within the RBC. The intracellular Ca(2+) pools of the parasite were selectively discharged, using thapsigargin to deplete endoplasmic reticulum (ER) Ca(2+) and the antimalarial chloroquine to deplete Ca(2+) from acidocalcisomes. These data show that the ER is the major IP(3)-sensitive Ca(2+) store. Previous work has shown that the human host hormone melatonin regulates P. falciparum cell cycle via a Ca(2+)-dependent pathway. In the present study, we demonstrate that melatonin increases inositol-polyphosphate production in intact intraerythrocytic parasite. Moreover, the Ca(2+) responses to melatonin and uncaging of IP(3) were mutually exclusive in infected RBCs. Taken together these data provide evidence that melatonin activates PLC to generate IP(3) and open ER-localized IP(3)-sensitive Ca(2+) channels in P. falciparum. This receptor signaling pathway is likely to be involved in the regulation and synchronization of parasite cell cycle progression.
Resumo:
The protozoan parasite Leishmania causes serious infections in humans all over the world. After being inoculated into the skin through the bite of an infected sandfly, Leishmania promastigotes must gain entry into macrophages to initiate a successful infection. Specific, surface exposed phospholipids have been implicated in Leishmania-macrophage interaction but the mechanisms controlling and regulating the plasma membrane lipid distribution remains to be elucidated. Here, we provide evidence for Ca(2+)-induced phospholipid scrambling in the plasma membrane of Leishmania donovani. Stimulation of parasites with ionomycin increases intracellular Ca(2+) levels and triggers exposure of phosphatidylethanolamine at the cell surface. We found that increasing intracellular Ca(2+) levels with ionomycin or thapsigargin induces rapid transbilayer movement of NBD-labelled phospholipids in the parasite plasma membrane that is bidirectional, independent of cellular ATP and not specific to the polar lipid head group. The findings suggest the presence of a Ca(2+)-dependent lipid scramblase activity in Leishmania parasites. Our studies further show that lipid scrambling is not activated by rapid exposure of promastigotes to higher physiological temperature that increases intracellular Ca(2+) levels. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Interactions of leukocytes with endothelium play a role for the immune system modulated by endogenous agents, such as glucocorticoids and nitric oxide (NO). Glucocorticoids inhibit leukocyte-endothelial interactions whereas the role of NO is still controversial. In this study, the activity of Ca(+2)-dependent nitric oxide synthases was in vivo blocked in male Wistar rats by given L-NAME, 20 mg kg(-1) for 14 days dissolved in drinking water and expression of adhesion molecules involved in leukocyte-endothelial interactions was investigated. Expressions of L-selectin and PECAM-I in peripheral leukocytes and PECAM-1 in endothelial cells were reduced by L-NAME treatment. Only L-selectin expression was controlled at transcriptional levels. These effects were not dependent on endogenous glucocorticoids, as corticosterone levels were not altered in NAME-treated rats. Our results show that NO, produced at physiological levels, controls expression of constitutive adhesion molecules expressions in cell membranes by different mechanisms of action. Published by Elsevier Inc.
Resumo:
Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 mu M) concentrations of forskolin, respectively. The expression of GLP-1 receptors in a cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on a cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates a cell electrical activity, increases [Ca(2+)] enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP]). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP],.
Resumo:
OBJECTIVE The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS-C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes. Diabetes 59:1192-1201, 2010
Resumo:
Lead calcium titanate (Pb(1-x)Ca(x)TiO(3) or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
We have performed a systematic study of the time and temperature dependencies of the electrical resistivity (rho(T, t)) inNd(0.5)Ca(0.5)Mn(1-x)Cr(x)O(3) single crystals with x = 0.02 and 0.07 in order to examine the dynamics of the phase separation. The relaxation effects can be described by the combination of a rapid exponential increase/decrease with a slower logarithmic contribution at longer times. The experimental results suggest the existence of a large temperature window in which huge relaxation effects occur, and the relative fraction of the coexisting phases rapidly changes as a function of time, depending on the initial magnetic state of the sample. The rho(T, t) relaxation measurements were shown to be a suitable tool for probing the dynamical nature of the phase separation, in which magnetically distinct phases compete against each other in a wide temperature range. In addition, the features observed in the rho(T, t) curves were found to be in excellent agreement with both the magnetic properties and the structural transitions observed in these manganites.
Resumo:
The physical properties of the La(0.6)Y(0.1)Ca(0.3)MnO(3) compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol-gel method revealed that specimens are single phase and have average grain size of similar to 0.5 mu m. Magnetization and 4-probe dc electrical resistivity rho(T,H) experiments showed that a ferromagnetic transition at T(C) similar to 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T(MI). The magnetoresistance effect was found to be more pronounced at low applied fields (H <= 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T (C) and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity epsilon`(T,H) is consistent with changes in the concentration of e(g) mobile holes, a feature much more pronounced close to T (C).
Resumo:
We have studied the normal and superconducting transport properties of Bi(1.65)Pb(0.35)Sr(2)Ca(2)Cu(3)O(10+delta) (Bi-2223) ceramic samples. Four samples, from the same batch, were prepared by the solid-state reaction method and pressed uniaxially at different compacting pressures, ranging from 90 to 250 MPa before the last heat treatment. From the temperature dependence of the electrical resistivity, combined with current conduction models for cuprates, we were able to separate contributions arising from both the grain misalignment and microstructural defects. The behavior of the critical current density as a function of temperature at zero applied magnetic field, J (c) (T), was fitted to the relationship J (c) (T)ae(1-T/T (c) ) (n) , with na parts per thousand 2 in all samples. We have also investigated the behavior of the product J (c) rho (sr) , where rho (sr) is the specific resistance of the grain-boundary. The results were interpreted by considering the relation between these parameters and the grain-boundary angle, theta, with increasing the uniaxial compacting pressure. We have found that the above type of mechanical deformation improves the alignment of the grains. Consequently the samples exhibit an enhance in the intergranular properties, resulting in a decrease of the specific resistance of the grain-boundary and an increase in the critical current density.
Resumo:
The electronic and optical properties of grossular garnet are investigated using density functional theory (DFT) within generalized gradient approximation (GGA). The calculated lattice parameters are in good agreement with the experiment data. The electronic structure shows that grossular has a direct band gap of 5.22 eV. The dielectric functions, reflective index, extinction coefficient, reflectivity and energy-loss spectrum are calculated. The optical properties of grossular are discussed based on the band structure calculations. The O 2p states and Si 3s play a major role in these optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 30 and 250 nm. Finally, we concluded that pure grossular crystal does not absorb radiation in the visible range. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Perovskite-structured Ba(0.90)Ca(0.10)(Ti(1-x)Zr(x))O(3) ceramics were prepared in this work and subsequently studied in terms of composition-dependent dielectric and high-resolution long-range order structural properties from 30 to 450 K. The dielectric response of these materials was measured at several frequencies in the range from 1 kHz to 1 MHz. Combining both techniques, including Rietveld refinement of the X-ray diffraction data, allowed observing that, when increasing Zr(4+) content, the materials change from conventional to diffuse and relaxor ferroelectric compounds, the transition occurring spontaneously at the x = 0.18 composition. Interestingly, this spontaneous transition turned out to be prevented for a further increase of Zr(4+). On the basis of all the dielectric and structural results processed, a phase diagram of this system is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Ca isotopic compositions of Marinoan post-glacial carbonate successions in Brazil and NW Canada were measured Both basal dolostones display delta(44/40)Ca values between 1 and 0 7 parts per thousand overlying limestones show a negative Ca isotope excursion to values around 0 1 parts per thousand and delta(44/40)Ca values rapidly increase up-section to near 2 0 parts per thousand In the Brazilian successions those high delta(44/40)Ca values rapidly decrease and stabilize to values between 0 6 and 0 9 parts per thousand These Ca isotope secular variation trends are unlike those of Sturtian post-glacial carbonate successions but similar to those of Marinoan post-glacial carbonate successions in Namibia suggesting that the perturbation of the marine Ca cycle was global This recommends Ca isotope stratigraphy as a tool to correlate Neoproterozoic post-glacial carbonate successions worldwide While the lowermost and uppermost strata have delta(44/40)Ca values typical of Phanerozoic carbonates the extremes 0 1 and 2 0 parts per thousand have not been thus far reported for other marine carbonates These extreme values suggest a short-lived non-actualistic perturbation in the marine Ca cycle Simple box modelling of the Marinoan post-glacial marine Ca cycle can reproduce the extreme values only by postulating a two-step process with Ca input initially exceeding Ca removal trough carbonate precipitation followed by precipitation overtaking a decreased Ca Input (C) 2010 Elsevier B V All rights reserved
Resumo:
Architectures based on Coordinated Atomic action (CA action) concepts have been used to build concurrent fault-tolerant systems. This conceptual model combines concurrent exception handling with action nesting to provide a general mechanism for both enclosing interactions among system components and coordinating forward error recovery measures. This article presents an architectural model to guide the formal specification of concurrent fault-tolerant systems. This architecture provides built-in Communicating Sequential Processes (CSPs) and predefined channels to coordinate exception handling of the user-defined components. Hence some safety properties concerning action scoping and concurrent exception handling can be proved by using the FDR (Failure Divergence Refinement) verification tool. As a result, a formal and general architecture supporting software fault tolerance is ready to be used and proved as users define components with normal and exceptional behaviors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The sporulation stage of the aquatic fungus Blastocladiella emersonii culminates with the formation and release to the medium of a number of zoospores, which are motile cells responsible for the dispersal of the fungus. The presence in the sporulation solution of 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a potent and selective inhibitor of nitric oxide-sensitive guanylyl cyclases, completely prevented biogenesis of the zoospores. In addition, this compound was able to significantly reduce cGMP levels, which increase drastically during late sporulation, suggesting the existence of a nitric oxide-dependent mechanism for cGMP synthesis. Furthermore, increased levels of nitric oxide-derived products were detected during sporulation by fluorescence assays using DAF-2 DA, whose signal was drastically reduced in the presence of the nitric oxide synthase inhibitor N omega-Nitro-L-arginine methyl ester (L-NAME). These results were confirmed by quantitative chemiluminescent determination of the intracellular levels of nitric oxide-derived products. A putative nitric oxide synthase (NOS) activity was detected throughout sporulation, and this enzyme activity decreased significantly when L-NAME and 1-[2-(Trifluoromethyl)phenyl]imidazole (TRIM) were added to the assays. NOS assays carried out in the presence of EGTA showed decreased enzyme activity, suggesting the involvement of calcium ions in enzyme activation. Additionally, expressed sequence tags (ESTs) encoding putative guanylyl cyclases and a cGMP-phosphodiesterase were found in B. emersonii EST database (http://blasto.iq.usp.br), and the mRNA levels of the corresponding genes were observed to increase during sporulation. Altogether, data presented here revealed the presence and expression of guanylyl cyclase and cGMP phosphodiesterase genes in B. emersonii and provided evidence of a Ca(2+)-(center dot)NO-cGMP signaling pathway playing a role in zoospore biogenesis. (C) 2009 Elsevier Inc. All rights reserved.