356 resultados para Pro-oxidant activity

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalase mimetic complex Mn(III)-salen chloride (EUK8) was found to be pro-oxidant under low hydrogen peroxide concentrations. The increase in the fluorescence rate of the probe 1,2,3-dihydrorhodamine (DHR) in solution, as well as the carbonyl content of human serum albumin were found to be maximum at H(2)O(2):EUK8 molar ratios ranging from 0 to 2, supporting previous findings regarding the mechanism of EUK8 catalase activity and the formation of highly oxidative Mn(V)-O(2-) species. This pro-oxidant effect is precluded by the presence of glutathione. Cytotoxicity to HeLa cells, as probed by increased rate of oxidation of intracellular DHR, was not observed. Our findings suggest that the combination of H(2)O(2) and EUK8 at specific molar ratios, in the absence of reductants/antioxidants, induces the oxidation of organic molecules. It is shown that the fluorimetric determination of pro-oxidant activity of metal complexes is more sensitive than the colorimetric quantification of protein carbonyl content. The implications of our findings with respect to the somewhat confusing results arising from in vivo studies of EUK8 and other Mn(III) anti-oxidant metal complexes are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of S,S-ethylenediaminedisuccinic acid (edds) on the quenching of metal-catalyzed (metal = Mn, Fe, Co, Ni, Cu, Zn) oxidation of ascorbic acid was tested in vitro via oxidation of the fluorescent probe 1,2,3-dihydrorhodamine dihydrochloride. The pro-oxidant activity of iron was not fully suppressed, even at a four-fold molar excess of the ligand. The effect of serum on the toxicity to peripheral blood mononuclear cells (PBMC) and K562 cells was investigated. The cytotoxic effect of Fe-edds was abrogated in the presence of Trolox or serum proteins. The probable pathways of cell toxicity were investigated through blocking of the monocarboxylate transporters (MCT) in association with cell cycle studies by flow cytometry. Cells treated with metal complexes and alpha-cyano-4-hydroxycinnamic acid, a known MCT inhibitor, showed recovery of viability, suggesting that MCT proteins may be involved in the internalization of metal-edds complexes. The free acid induced cell cycle arrest in G0/G1 (PBMC) and S (K562) phases, suggesting direct DNA damage or interference in DNA replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha-aminoketone 1,4-diamino-2-butanone (DAB), a putrescine analogue, is highly toxic to various microorganisms, including Trypanosoma cruzi. However, little is known about the molecular mechanisms underlying DAB`s cytotoxic properties. We report here that DAB (pK(a) 7.5 and 9.5) undergoes aerobic oxidation in phosphate buffer, pH 7.4, at 37 degrees C, catalyzed by Fe(II) and Cu(II) ions yielding NH(4)(+) ion, H(2)O(2), and 4-amino-2-oxobutanal (oxoDAB). OxoDAB, like methylglyoxal and other alpha-oxoaldehydes, is expected to cause protein aggregation and nucleobase lesions. Propagation of DAB oxidation by superoxide radical was confirmed by the inhibitory effect of added SOD (50 U ml(-1)) and stimulatory effect of xanthine/xanthine oxidase, a source of superoxide radical. EPR spin trapping studies with 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) revealed an adduct attributable to DMPO-HO(center dot), and those with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone or 3,5-dibromo-4-nitrosobenzenesulfonic acid, a six-line adduct assignable to a DAB(center dot) resonant enoyl radical adduct. Added horse spleen ferritin (HoSF) and bovine apo-transferrin underwent oxidative changes in tryptophan residues in the presence of 1.0-10 mM DAB. Iron release from HoSF was observed as well. Assays performed with fluorescein-encapsulated liposomes of cardiolipin and phosphatidylcholine (20:80) incubated with DAB resulted in extensive lipid peroxidation and consequent vesicle permeabilization. DAB (0-10 mM) administration to cultured LLC-MK2 epithelial cells caused a decline in cell viability, which was inhibited by preaddition of either catalase (4.5 mu M) or aminoguanidine (25 mM). Our findings support the hypothesis that DAB toxicity to several pathogenic microorganisms previously described may involve not only reported inhibition of polyamine metabolism but also DAB pro-oxidant activity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine organisms have been shown to be potential sources of bioactive compounds with pharmaceutical applications. Previous chemical investigation of the nudibranch Tambja eliora led to the isolation of the alkaloid tambjamine D. Tambjamines have been isolated from marine sources and belong to the family of 4-methoxypyrrolic-derived natural products, which display promising immunosuppressive and cytotoxic properties. Their ability to intercalate DNA and their pro-oxidant activity may be related to some of the biological effects of the 4-methoxypyrrolic alkaloids. The aim of the present investigation was to determine the cytotoxic, pro-oxidant and genotoxic properties of tambjamine D in V79 Chinese hamster lung fibroblast cells. Tambjamine D displayed a potent cytotoxic effect in V79 cells (IC50 1.2 mu g/mL) evaluated by the MTT assay. Based on the MTT result, V79 cells were treated with different concentrations of tambjamine D (0.6. 1.2. 2.4 and 4.8 mu g/mL). After 24 h, tambjamine D reduced the number of viable cells in a concentration-dependent way at all concentrations tested. assessed by the trypan blue dye exclusion test. The hemolytic assay showed that the cytotoxic activity of tambjamine D was not related to membrane disruption (EC50 > 100 mu g/mL). Tambjamine D increased the number of apoptotic cells in a concentration-dependent manner at all concentrations tested according to acridine orange/ethidium bromide staining, showing that the alkaloid cytotoxic effect was related to the induction of apoptosis. MTT reduction was stimulated by tambjamine D, which may indicate the generation of reactive oxygen species. Accordingly, treatment of cells with tambjamine D increased nitrite/nitrate at all concentrations and TBARS production starting at the concentration corresponding to the IC50. Tambjamine D, also, induced DNA strand breaks and increased the micronucleus cell frequency as evaluated by comet and micronucleus tests, respectively, at all concentrations evaluated. showing a genotoxic risk induced by tambjamine D. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aminoacetone (AA), triose phosphates, and acetone are putative endogenous sources of potentially cytotoxic and genotoxic methylglyoxal (MG), which has been reported to be augmented in the plasma of diabetic patients. In these patients, accumulation of MG derived from aminoacetone, a threonine and glycine catabolite, is inferred from the observed concomitant endothelial overexpression of circulating semicarbazide-sensitive amine oxidases. These copper-dependent enzymes catalyze the oxidation of primary amines, such as AA and methylamine, by molecular oxygen, to the corresponding aldehydes, NH4+ ion and H2O2. We recently reported that AA aerobic oxidation to MG also takes place immediately upon addition of catalytic amounts of copper and iron ions. Taking into account that (i) MG and H2O2 are reportedly cytotoxic to insulin-producing cell lineages such as RINm5f and that (ii) the metal-catalyzed oxidation of AA is propagated by O-2(center dot-) radical anion, we decided to investigate the possible pro-oxidant action of AA on these cells taken here as a reliable model system for pancreatic beta-cells. Indeed, we show that AA (0.10-5.0 mM) administration to RINm5f cultures induces cell death. Ferrous (50-300 mu M) and Fe3+ ion (100 mu M) addition to the cell cultures had no effect, whereas Cu2+ (5.0-100 mu M) significantly increased cell death. Supplementation of the AA- and Cu2+-containing culture medium with antioxidants, such as catalase (5.0 mu M), superoxide dismutase (SOD, 50 U/mL), and N-acetylcysteine (NAC, 5.0 mM) led to partial protection. mRNA expression of MnSOD, CuZnSOD, glutathione peroxidase, and glutathione reductase, but not of catalase, is higher in cells treated with AA (0.50-1.0 mM) plus Cu2+ ions (10-50 mu M) relative to control cultures. This may imply higher activity of antioxidant enzymes C, in RINm5f AA-treated cells. In addition, we have found that AA (0.50-1.0 mM) Plus Cu2+ (100 mu M) (i) increase RINm5f cytosolic calcium; (ii) promote DNA fragmentation; and (iii) increase the pro-apoptotic (Bax)/antiapoptotic (Bcl-2) ratio at the level of mRNA expression. In conclusion, although both normal and pathological concentrations of AA are probably much lower than those used here, it is tempting to propose that excess AA in diabetic patients may drive oxidative damage and eventually the death of pancreatic beta-cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cracking formation during the photodegradation of polypropylene (PP) plates (1 mm thickness), with (PPOx) and without pro-oxidant [PP), has been investigated. The plates were produced by extrusion in an industrial production line and were exposed to ultraviolet radiation in the laboratory for periods of up to 480 hr. The samples were investigated by infrared spectroscopy- FTIR, optical light microscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that the extension of photodegradation process is more intense for PPOx than for PP samples. For both samples, cracks were formed at the surface perpendicularly to the flow-lines. However the cracks frequency was different for both samples and sides of sample. The crack frequency was correlated with chain orientation, A(110); it was shown that lower degrees of orientation resulted in lower crack frequency. POLYM. ENG. SCI., 48:365-372, 2008. (c) 2007 Society of Plastics Engineers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The curcumin`s effect given orally by gavage in single- or multiple-dose regimens on methemoglobinemia induced by dapsone (DDS) was investigated in male Wistar rats. In the single-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg body weight (bw), or curcumin at 0.02, 0.1, 1, 10, or 30 mg/kg bw plus DDS at 40 mg/kg bw, intraperitoneally (i.p.), 2 hours after. In the multiple-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg bw for 5 days, with or without DDS (40 mg/kg bw, i.p.) 2 hours after on the fifth day. In both regimens, further groups of 10 rats were given DDS alone (positive controls) or normal saline (negative controls) i.p. Single-dose treatment with curcumin at 0.02 and 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, while the higher doses showed a pro-oxidant effect, significantly increasing DDS-induced methemoglobinemia. In the multiple-dose regimen, treatment with curcumin at 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, but the higher doses were without significant effect compared to DDS alone. It is concluded that curcumin at low doses mitigates methemoglobinemia induced by dapsone in rats, both in single- and multiple-dose regimens. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Myofiber degeneration, inflammation, and fibrosis are remarkable features of Duchenne muscular dystrophy. We hypothesized that the administration of imatinib mesylate, an inhibitor of tyrosine kinase and TGF-beta pro-fibrogenic activity, could improve the muscular conditions in mdx mice. Four-week old mdx mice were treated and exercised for 6 weeks. Gastrocnemius and diaphragm histopathology, strength, creatine kinase, and cytokine levels were evaluated. The treated group presented increased muscular strength and decreased CK levels, injured myofibers, and inflammatory infiltrates. Pro-inflammatory cytokines and TGF-beta were also reduced, while IL-10 was increased, suggesting an immunomodulatory effect of imatinib, which can ameliorate the dystrophic phenotype in mdx mice. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammatory responses have been described as occurring after exposure to some latex materials. In this study pro-inflammatory activity in the latex of Cryptostegia grandiflora was investigated. The soluble proteins of the latex (CgLP) were isolated from the whole latex and evaluated by in vivo assays. CgLP induced strong inflammatory activity mediated by neutrophil migration, enlarging vascular permeability and increasing myeloperoxidase activity locally in rats. CgLP-induced inflammation was observed in peritonitis, paw edema and air push models. In addition, CgLP caused hyperemia in a healing model. The peritonitis effect was lost when CgLP was previously boiled suggesting the involvement of proinflammatory proteins. Thioglycollate increased the neutrophil migration induced by CgLP, but not by fMLP Mast cell depletion provoked by 40/80 compound did not modify the course of inflammation triggered by CgLP, being similar to fMLP, which suggested that neutrophil migration was induced by direct mechanism mediated by macrophages. Neutrophil migration stimulated by CgLP was strongly inhibited by Dexamethasone and to a lesser extent by Thalidomide, indicating the involvement of cytokines in mediating neutrophil infiltration. Celecoxib and Indomethacin were inhibitory suggesting the involvement of prostaglandins. Cimetidine was effective only in the initial phase of edema. PCA 4248 was ineffective. It is concluded that the latex of C. grandiflora is a potent inflammatory fluid, and also that laticifer proteins may be implicated in this process. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Increased amounts of reactive oxygen species (ROS) during in vitro fertilization (IVF) may cause cytotoxic damage to gametes, whereas small amounts of ROS favour sperm capacitation. The aim of this study was to investigate the effect of antioxidants [50 mu M beta-mercaptoethanol (beta-ME) and 50 mu M cysteamine (Cyst)] or a pro-oxidant (5 mm buthionine sulfoximine) on the quality and penetrability of spermatozoa into bovine oocytes and on the subsequent embryo development and quality when added during IVF. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes, and mitochondrial function, was diminished (p < 0.05) after 4-h culture in the presence of antioxidants. Oocyte penetration rates were similar between treatments (p > 0.05), but antioxidants adversely affected the normal pronuclear formation rates (p < 0.05). The incidence of polyspermy was high for beta-ME (p < 0.05). No differences were observed in cleavage rates between treatments (p > 0.05). However, the developmental rate to the blastocyst stage was adversely affected by Cyst treatment (p < 0.05). The quality of embryos that reached the blastocyst stage, evaluated by total, inner cell mass (ICM) and trophectoderm cell numbers and ICM/total cell ratio was unaffected (p > 0.05) by treatments. The results indicate that ROS play a role in the fertilizing capacity in bovine spermatozoa, as well as in the interaction between the spermatozoa and the oocytes. It can be concluded that supplementation with antioxidants during IVF procedures impairs sperm quality, normal pronuclear formation and embryo development to the blastocyst stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The balance between different immunological stimuli is essential in the progression and stabilization of atherosclerotic plaques. Immune regulation has been suggested as potential target for the treatment of atherosclerotic disease. We sought to determine whether treatment with pentoxifylline, a phosphodiesterase inhibitor with immunomodulating properties, could reduce the pro-inflammatory response observed in patients with acute coronary syndromes (ACS) and increase anti-inflammatory activity. In a double-blind, prospective, placebo-controlled study, 64 patients with ACS were randomized to receive pentoxifylline 400 mg TID or placebo for 6 months. Analysis of the pro-inflammatory markers, Greactive protein (CRP), interleukin (IL)-6, IL-12, interferon-gamma and tumor necrosis factor (TNF)-alpha and the anti-inflammatory cytokines, transforming growth factor (TGF)-beta 1 and IL-10 were done at baseline, 1 and 6 months. Pentoxifylline treatment significantly reduced the adjusted levels of CRP and TNF-alpha compared to placebo after 6 months (P=0.04 and P < 0.01, respectively). IL-12 increase was significantly less pronounced with pentoxifylline (P=0.04). The levels of the anti-inflammatory cytokine, IL-10, also declined significantly less in the pentoxifylline group compared to placebo (P < 0.01) with a trend towards a higher increase of TGF-beta 1 in the former group (P=0.16). Pentoxifylline reduces pro-inflammatory and increases anti-inflammatory response in patients with ACS and may have beneficial clinical effects on cardiovascular events. (c) 2006 Elsevier Ireland Ltd. All rights reserved.