13 resultados para Prediction model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present work, a group contribution method is proposed for the estimation of viscosity of fatty compounds and biodiesel esters as a function of the temperature. The databank used for regression of the group contribution parameters (1070 values for 65 types of substances) included fatty compounds, such as fatty acids, methyl and ethyl esters and alcohols, tri- and diacylglycerols, and glycerol. The inclusion of new experimental data for fatty esters, a partial acylglycerol, and glycerol allowed for a further refinement in the performance of this methodology in comparison to a prior group contribution equation (Ceriani, R.; Goncalves, C. B.; Rabelo, J.; Caruso, M.; Cunha, A. C. C.; Cavaleri, F. W.; Batista, E. A. C.; Meirelles, A. J. A. Group contribution model for predicting viscosity of fatty compounds. J. Chem. Eng. Data 2007, 52, 965-972) for all classes of fatty compounds. Besides, the influence of small concentrations of partial acylglycerols, intermediate compounds in the transesterification reaction, in the viscosity of biodiesels was also investigated.
Resumo:
A detailed climatology of the cyclogenesis over the Southern Atlantic Ocean (SAO) from 1990 to 1999 and how it is simulated by the RegCM3 (Regional Climate Model) is presented here. The simulation used as initial and boundary conditions the National Centers for Environmental Prediction-Department of Energy (NCEP/DOE) reanalysis. The cyclones were identified with an automatic scheme that searches for cyclonic relative vorticity (zeta(10)) obtained from a 10-m height wind field. All the systems with zeta(10) a parts per thousand currency sign -1.5 x 10(-5) s(-1) and lifetime equal or larger than 24 h were considered in the climatology. Over SAO, in 10 years were detected 2,760 and 2,787 cyclogeneses in the simulation and NCEP, respectively, with an annual mean of 276.0 +/- A 11.2 and 278.7 +/- A 11.1. This result suggests that the RegCM3 has a good skill to simulate the cyclogenesis climatology. However, the larger model underestimations (-9.8%) are found for the initially stronger systems (zeta(10) a parts per thousand currency sign -2.5 x 10(-5) s(-1)). It was noted that over the SAO the annual cycle of the cyclogenesis depends of its initial intensity. Considering the systems initiate with zeta(10) a parts per thousand currency sign -1.5 x 10(-5) s(-1), the annual cycle is not well defined and the higher frequency occurs in the autumn (summer) in the NCEP (RegCM3). The stronger systems (zeta(10) a parts per thousand currency sign -2.5 x 10(-5) s(-1)) have a well-characterized high frequency of cyclogenesis during the winter in both NCEP and RegCM3. This work confirms the existence of three cyclogenetic regions in the west sector of the SAO, near the South America east coast and shows that RegCM3 is able to reproduce the main features of these cyclogenetic areas.
Resumo:
Regional Climate Model version 3 (RegCM3) simulations of 17 summers (1988-2004) over part of South America south of 5 degrees S were evaluated to identify model systematic errors. Model results were compared to different rainfall data sets (Climate Research Unit (CRU), Climate Prediction Center (CPC), Global Precipitation Climatology Project (GPCP), and National Centers for Environmental Prediction (NCEP) reanalysis), including the five summers mean (1998-2002) precipitation diurnal cycle observed by the Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR). In spite of regional differences, the RegCM3 simulates the main observed aspects of summer climatology associated with the precipitation (northwest-southeast band of South Atlantic Convergence Zone (SACZ)) and air temperature (warmer air in the central part of the continent and colder in eastern Brazil and the Andes Mountains). At a regional scale, the main RegCM3 failures are the underestimation of the precipitation in the northern branch of the SACZ and some unrealistic intense precipitation around the Andes Mountains. However, the RegCM3 seasonal precipitation is closer to the fine-scale analyses (CPC, CRU, and TRMM-PR) than is the NCEP reanalysis, which presents an incorrect north-south orientation of SACZ and an overestimation of its intensity. The precipitation diurnal cycle observed by TRMM-PR shows pronounced contrasts between Tropics and Extratropics and land and ocean, where most of these features are simulated by RegCM3. The major similarities between the simulation and observation, especially the diurnal cycle phase, are found over the continental tropical and subtropical SACZ regions, which present afternoon maximum (1500-1800 UTC) and morning minimum (0900-1200 UTC). More specifically, over the core of SACZ, the phase and amplitude of the simulated precipitation diurnal cycle are very close to the TRMM-PR observations. Although there are amplitude differences, the RegCM3 simulates the observed nighttime rainfall in the eastern Andes Mountains, over the Atlantic Ocean, and also over northern Argentina. The main simulation deficiencies are found in the Atlantic Ocean and near the Andes Mountains. Over the Atlantic Ocean the convective scheme is not triggered; thus the rainfall arises from the grid-scale scheme and therefore differs from the TRMM-PR. Near the Andes, intense (nighttime and daytime) simulated precipitation could be a response of an incorrect circulation and topographic uplift. Finally, it is important to note that unlike most reported bias of global models, RegCM3 does not trigger the moist convection just after sunrise over the southern part of the Amazon.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Process scheduling techniques consider the current load situation to allocate computing resources. Those techniques make approximations such as the average of communication, processing, and memory access to improve the process scheduling, although processes may present different behaviors during their whole execution. They may start with high communication requirements and later just processing. By discovering how processes behave over time, we believe it is possible to improve the resource allocation. This has motivated this paper which adopts chaos theory concepts and nonlinear prediction techniques in order to model and predict process behavior. Results confirm the radial basis function technique which presents good predictions and also low processing demands show what is essential in a real distributed environment.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The purpose of this article is to present a new method to predict the response variable of an observation in a new cluster for a multilevel logistic regression. The central idea is based on the empirical best estimator for the random effect. Two estimation methods for multilevel model are compared: penalized quasi-likelihood and Gauss-Hermite quadrature. The performance measures for the prediction of the probability for a new cluster observation of the multilevel logistic model in comparison with the usual logistic model are examined through simulations and an application.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The objective of this article is to find out the influence of the parameters of the ARIMA-GARCH models in the prediction of artificial neural networks (ANN) of the feed forward type, trained with the Levenberg-Marquardt algorithm, through Monte Carlo simulations. The paper presents a study of the relationship between ANN performance and ARIMA-GARCH model parameters, i.e. the fact that depending on the stationarity and other parameters of the time series, the ANN structure should be selected differently. Neural networks have been widely used to predict time series and their capacity for dealing with non-linearities is a normally outstanding advantage. However, the values of the parameters of the models of generalized autoregressive conditional heteroscedasticity have an influence on ANN prediction performance. The combination of the values of the GARCH parameters with the ARIMA autoregressive terms also implies in ANN performance variation. Combining the parameters of the ARIMA-GARCH models and changing the ANN`s topologies, we used the Theil inequality coefficient to measure the prediction of the feed forward ANN.
Resumo:
In the present work, a new approach for the determination of the partition coefficient in different interfaces based on the density function theory is proposed. Our results for log P(ow) considering a n-octanol/water interface for a large super cell for acetone -0.30 (-0.24) and methane 0.95 (0.78) are comparable with the experimental data given in parenthesis. We believe that these differences are mainly related to the absence of van der Walls interactions and the limited number of molecules considered in the super cell. The numerical deviations are smaller than that observed for interpolation based tools. As the proposed model is parameter free, it is not limited to the n-octanol/water interface.
Resumo:
A correlation between the physicochemical properties of mono- [Li(I), K(I), Na(I)] and divalent [Cd(II), Cu(II), Mn(II), Ni(II), Co(II), Zn(II), Mg(II), Ca(II)] metal cations and their toxicity (evaluated by the free ion median effective concentration. EC50(F)) to the naturally bioluminescent fungus Gerronema viridilucens has been studied using the quantitative ion character activity relationship (QICAR) approach. Among the 11 ionic parameters used in the current study, a univariate model based on the covalent index (X(m)(2)r) proved to be the most adequate for prediction of fungal metal toxicity evaluated by the logarithm of free ion median effective concentration (log EC50(F)): log EC50(F) = 4.243 (+/-0.243) -1.268 (+/-0.125).X(m)(2)r (adj-R(2) = 0.9113, Alkaike information criterion [AIC] = 60.42). Additional two- and three-variable models were also tested and proved less suitable to fit the experimental data. These results indicate that covalent bonding is a good indicator of metal inherent toxicity to bioluminescent fungi. Furthermore, the toxicity of additional metal ions [Ag(I), Cs(I), Sr(II), Ba(II), Fe(II), Hg(II), and Pb(II)] to G. viridilucens was predicted, and Pb was found to be the most toxic metal to this bioluminescent fungus (EC50(F)): Pb(II) > Ag(I) > Hg(I) > Cd(II) > Cu(II) > Co(II) Ni(II) > Mn(II) > Fe(II) approximate to Zn(II) > Mg(II) approximate to Ba(II) approximate to Cs(I) > Li(I) > K(I) approximate to Na(I) approximate to Sr(II)> Ca(II). Environ. Toxicol. Chem. 2010;29:2177-2181. (C) 2010 SETAC