46 resultados para Prediction Error
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
O objetivo foi avaliar a acurácia, precisão e robustez das estimativas da digestibilidade aparente da matéria seca obtidas utilizando-se como indicadores fibra em detergente ácido indigestível (FDAi), fibra em detergente neutro (FDNi) indigestível, lignina em detergente ácido (LDA), LDA indigestível (LDAi) e óxido crômico em comparação ao método de coleta total de fezes. Dezoito ovinos (56,5 ± 4,6 kg PV) foram designados aleatoriamente a dietas compostas de 25, 50 ou 75% de concentrado e feno de Coast cross por 25 dias. As fezes foram coletadas por cinco dias para determinação da digestibilidade aparente da MS. As amostras de alimentos e fezes foram incubadas no rúmen de três bovinos por 144 horas, para obtenção das frações indigestíveis. Óxido crômico foi administrado a 4,0 g/animal/dia. A acurácia foi avaliada pela comparação do viés médio (DAMS predito - DAMS observado) entre os indicadores; a precisão, por meio da raiz quadrada do erro de predição e do erro residual; e a robustez, pelo estudo da regressão entre o viés e o consumo de matéria seca, o nível de concentrado e o peso vivo. A recuperação fecal e a acurácia das estimativas da digestibilidade aparente da MS foram maiores para FDAi, seguida pela FDNi, LDAi, pelo óxido crômico e depois pela lignina em detergente ácido. O viés linear foi significativo apenas para FDAi, FDNi e LDAi. O uso de óxido crômico permitiu estimativas mais precisas da digestibilidade aparente da MS. Todos os indicadores foram robustos quanto à variação no consumo de matéria seca e apenas LDAi e óxido crômico foram robustos quanto aos níveis de concentrado na dieta. O óxido crômico não foi robusto quando houve variação no peso vivo animal. Assim, a FDAi é o indicador mais recomendado na estimativa da digestibilidade aparente da MS em ovinos quando o objetivo é comparar aos dados da literatura, enquanto o óxido crômico é mais recomendado quando o objetivo é comparar tratamentos dentro de um mesmo experimento.
Resumo:
P>Soil bulk density values are needed to convert organic carbon content to mass of organic carbon per unit area. However, field sampling and measurement of soil bulk density are labour-intensive, costly and tedious. Near-infrared reflectance spectroscopy (NIRS) is a physically non-destructive, rapid, reproducible and low-cost method that characterizes materials according to their reflectance in the near-infrared spectral region. The aim of this paper was to investigate the ability of NIRS to predict soil bulk density and to compare its performance with published pedotransfer functions. The study was carried out on a dataset of 1184 soil samples originating from a reforestation area in the Brazilian Amazon basin, and conventional soil bulk density values were obtained with metallic ""core cylinders"". The results indicate that the modified partial least squares regression used on spectral data is an alternative method for soil bulk density predictions to the published pedotransfer functions tested in this study. The NIRS method presented the closest-to-zero accuracy error (-0.002 g cm-3) and the lowest prediction error (0.13 g cm-3) and the coefficient of variation of the validation sets ranged from 8.1 to 8.9% of the mean reference values. Nevertheless, further research is required to assess the limits and specificities of the NIRS method, but it may have advantages for soil bulk density predictions, especially in environments such as the Amazon forest.
Resumo:
Establishing a few sites in which measurements of soil water storage (SWS) are time stable significantly reduces the efforts involved in determining average values of SWS. This study aimed to apply a new criterion the mean absolute bias error (MABE)-to identify temporally stable sites for mean SWS evaluation. The performance of MABE was compared with that of the commonly used criterion, the standard deviation of relative difference (SDRD). From October 2004 to October 2008, SWS of four soil layers (0-1.0, 1.0-2.0,2.0-3.0, and 3.0-4.0 m) was measured, using a neutron probe, at 28 sites on a hillslope of the Loess Plateau, China. A total of 37 SWS data sets taken over time were divided into two subsets, the first consisting of 22 dates collected during the calibration period from October 2004 to September 2006, and the second with 15 dates collected during the validation period from October 2006 to October 2008. The results showed that if a critical value of 5% for MABE was defined, more than half the sites were temporally stable for both periods, and the number of temporally stable sires generally increased with soil depth. Compared with SDRD, MABE was more suitable for the identification of time-stable sites for mean SS prediction. Since the absolute prediction error of drier sites is more sensitive to changes in relative difference in terms of mean SWS prediction, the sites of wet sectors should be preferable for mean SWS prediction for the same changes in relative difference.
Resumo:
Bioelectrical impedance vector analysis (BIVA) is a new method that is used for the routine monitoring of the variation in body fluids and nutritional status with assumptions regarding body composition values. The aim of the present study was to determine bivariate tolerance intervals of the whole-body impedance vector and to describe phase angle (PA) values for healthy term newborns aged 7-28 d. This descriptive cross-sectional study was conducted on healthy term neonates born at a low-risk public maternity. General and anthropometric neonatal data and bioelectrical impedance data (800 mu A-50 kHz) were obtained. Bivariate vector analysis was conducted with the resistance-reactance (RXc) graph method. The BIVA software was used to construct the graphs. The study was conducted on 109 neonates (52.3% females) who were born at term, adequate for gestational age, exclusively breast-fed and aged 13 (SD 3.6) d. We constructed one standard, reference, RXc-score graph and RXc-tolerance ellipses (50, 75 and 95 %) that can be used with any analyser. Mean PA was 3.14 (SD 0.43)degrees (3.12 (SD 0.39)degrees for males and 3.17 (SD 0.48)degrees for females). Considering the overlapping of ellipses of males and females with the general distribution, a graph for newborns aged 7-28 d with the same reference tolerance ellipse was defined for boys and girls. The results differ from those reported in the literature probably, in part, due to the ethnic differences in body composition. BIVA and PA permit an assessment without the need to know body weight and the prediction error of conventional impedance formulas.
Resumo:
The purpose of this article is to present a quantitative analysis of the human failure contribution in the collision and/or grounding of oil tankers, considering the recommendation of the ""Guidelines for Formal Safety Assessment"" of the International Maritime Organization. Initially, the employed methodology is presented, emphasizing the use of the technique for human error prediction to reach the desired objective. Later, this methodology is applied to a ship operating on the Brazilian coast and, thereafter, the procedure to isolate the human actions with the greatest potential to reduce the risk of an accident is described. Finally, the management and organizational factors presented in the ""International Safety Management Code"" are associated with these selected actions. Therefore, an operator will be able to decide where to work in order to obtain an effective reduction in the probability of accidents. Even though this study does not present a new methodology, it can be considered as a reference in the human reliability analysis for the maritime industry, which, in spite of having some guides for risk analysis, has few studies related to human reliability effectively applied to the sector.
Resumo:
Este trabalho avalia o desempenho de previsões sazonais do modelo climático regional RegCM3, aninhado ao modelo global CPTEC/COLA. As previsões com o RegCM3 utilizaram 60 km de resolução horizontal num domínio que inclui grande parte da América do Sul. As previsões do RegCM3 e CPTEC/COLA foram avaliadas utilizando as análises de chuva e temperatura do ar do Climate Prediction Center (CPC) e National Centers for Enviromental Prediction (NCEP), respectivamente. Entre maio de 2005 e julho de 2007, 27 previsões sazonais de chuva e temperatura do ar (exceto a temperatura do CPTEC/COLA, que possui 26 previsões) foram avaliadas em três regiões do Brasil: Nordeste (NDE), Sudeste (SDE) e Sul (SUL). As previsões do RegCM3 também foram comparadas com as climatologias das análises. De acordo com os índices estatísticos (bias, coeficiente de correlação, raiz quadrada do erro médio quadrático e coeficiente de eficiência), nas três regiões (NDE, SDE e SUL) a chuva sazonal prevista pelo RegCM3 é mais próxima da observada do que a prevista pelo CPTEC/COLA. Além disto, o RegCM3 também é melhor previsor da chuva sazonal do que da média das observações nas três regiões. Para temperatura, as previsões do RegCM3 são superiores às do CPTEC/COLA nas áreas NDE e SUL, enquanto o CPTEC/COLA é superior no SDE. Finalmente, as previsões de chuva e temperatura do RegCM3 são mais próximas das observações do que a climatologia observada. Estes resultados indicam o potencial de utilização do RegCM3 para previsão sazonal, que futuramente deverá ser explorado através de previsão por conjunto.
Resumo:
A series of nine new [3-(disubstituted-phosphate)-4,4,4-trifluoro-butyl]-carbamic acid ethyl esters (phosphate-carbamate compounds) was obtained through the reaction of (4,4,4-trifluoro-3-hydroxybut-1-yl)-carbamic acid ethyl esters with phosphorus oxychloride followed by the addition of alcohols. The products were characterized by ¹H, 13C, 31P, and 19F NMR spectroscopy, GC-MS, and elemental analysis. All the synthesized compounds were screened for acetylcholinesterase (AChE) inhibitory activity using the Ellman method. All compounds containing phosphate and carbamate pharmacophores in their structures showed enzyme inhibition, being the compound bearing the diethoxy phosphate group (2b) the most active compound. Molecular modeling studies were performed to investigate the detailed interactions between AChE active site and small-molecule inhibitor candidates, providing valuable structural insights into AChE inhibition.
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
A new criterion has been recently proposed combining the topological instability (lambda criterion) and the average electronegativity difference (Delta e) among the elements of an alloy to predict and select new glass-forming compositions. In the present work, this criterion (lambda.Delta e) is applied to the Al-Ni-La and Al-Ni-Gd ternary systems and its predictability is validated using literature data for both systems and additionally, using own experimental data for the Al-La-Ni system. The compositions with a high lambda.Delta e value found in each ternary system exhibit a very good correlation with the glass-forming ability of different alloys as indicated by their supercooled liquid regions (Delta T(x)) and their critical casting thicknesses. In the case of the Al-La-Ni system, the alloy with the largest lambda.Delta e value, La(56)Al(26.5)Ni(17.5), exhibits the highest glass-forming ability verified for this system. Therefore, the combined lambda.Delta e criterion is a simple and efficient tool to select new glass-forming compositions in Al-Ni-RE systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3563099]
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
Medium density fiberboard (MDF) is an engineered wood product formed by breaking down selected lignin-cellulosic material residuals into fibers, combining it with wax and a resin binder, and then forming panels by applying high temperature and pressure. Because the raw material in the industrial process is ever-changing, the panel industry requires methods for monitoring the composition of their products. The aim of this study was to estimate the ratio of sugarcane (SC) bagasse to Eucalyptus wood in MDF panels using near infrared (NIR) spectroscopy. Principal component analysis (PCA) and partial least square (PLS) regressions were performed. MDF panels having different bagasse contents were easily distinguished from each other by the PCA of their NIR spectra with clearly different patterns of response. The PLS-R models for SC content of these MDF samples presented a strong coefficient of determination (0.96) between the NIR-predicted and Lab-determined values and a low standard error of prediction (similar to 1.5%) in the cross-validations. A key role of resins (adhesives), cellulose, and lignin for such PLS-R calibrations was shown. PLS-DA model correctly classified ninety-four percent of MDF samples by cross-validations and ninety-eight percent of the panels by independent test set. These NIR-based models can be useful to quickly estimate sugarcane bagasse vs. Eucalyptus wood content ratio in unknown MDF samples and to verify the quality of these engineered wood products in an online process.
Resumo:
The aim of this study was to compare REML/BLUP and Least Square procedures in the prediction and estimation of genetic parameters and breeding values in soybean progenies. F(2:3) and F(4:5) progenies were evaluated in the 2005/06 growing season and the F(2:4) and F(4:6) generations derived thereof were evaluated in 2006/07. These progenies were originated from two semi-early, experimental lines that differ in grain yield. The experiments were conducted in a lattice design and plots consisted of a 2 m row, spaced 0.5 m apart. The trait grain yield per plot was evaluated. It was observed that early selection is more efficient for the discrimination of the best lines from the F(4) generation onwards. No practical differences were observed between the least square and REML/BLUP procedures in the case of the models and simplifications for REML/BLUP used here.
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.
Resumo:
In Natural Language Processing (NLP) symbolic systems, several linguistic phenomena, for instance, the thematic role relationships between sentence constituents, such as AGENT, PATIENT, and LOCATION, can be accounted for by the employment of a rule-based grammar. Another approach to NLP concerns the use of the connectionist model, which has the benefits of learning, generalization and fault tolerance, among others. A third option merges the two previous approaches into a hybrid one: a symbolic thematic theory is used to supply the connectionist network with initial knowledge. Inspired on neuroscience, it is proposed a symbolic-connectionist hybrid system called BIO theta PRED (BIOlogically plausible thematic (theta) symbolic-connectionist PREDictor), designed to reveal the thematic grid assigned to a sentence. Its connectionist architecture comprises, as input, a featural representation of the words (based on the verb/noun WordNet classification and on the classical semantic microfeature representation), and, as output, the thematic grid assigned to the sentence. BIO theta PRED is designed to ""predict"" thematic (semantic) roles assigned to words in a sentence context, employing biologically inspired training algorithm and architecture, and adopting a psycholinguistic view of thematic theory.