73 resultados para Power Grinding Equipment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This study presents a decision-making method for maintenance policy selection of power plants equipment. The method is based on risk analysis concepts. The method first step consists in identifying critical equipment both for power plant operational performance and availability based on risk concepts. The second step involves the proposal of a potential maintenance policy that could be applied to critical equipment in order to increase its availability. The costs associated with each potential maintenance policy must be estimated, including the maintenance costs and the cost of failure that measures the critical equipment failure consequences for the power plant operation. Once the failure probabilities and the costs of failures are estimated, a decision-making procedure is applied to select the best maintenance policy. The decision criterion is to minimize the equipment cost of failure, considering the costs and likelihood of occurrence of failure scenarios. The method is applied to the analysis of a lubrication oil system used in gas turbines journal bearings. The turbine has more than 150 MW nominal output, installed in an open cycle thermoelectric power plant. A design modification with the installation of a redundant oil pump is proposed for lubricating oil system availability improvement. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
This paper discusses the need to simultaneously monitor voltage unbalance and harmonic distortions in addition to root-mean-square voltage values. An alternative way to obtain the parameters related to voltage unbalance at fundamental frequency as well as voltage harmonic distortions is here proposed, which is based on the representation of instantaneous values at the axes and at the instantaneous Euclidean norm. A new power-quality (PQ) index is then proposed to combine the effects of voltage unbalance and harmonic distortions. This new index is easily implemented into existing electronic power meters. This PQ index is determined from the analysis of temperature rise in induction motor windings, which were tested for long periods of time. This paper also shows that these voltage disturbances, which are harmful to the lifetime expectancy of motors, can be measured by alternative ways in relation to conventional methods. Although this paper deals with induction motors only, the results show the relevance for further studies on other pieces of equipment.
Resumo:
An efficient expert system for the power transformer condition assessment is presented in this paper. Through the application of Duval`s triangle and the method of the gas ratios a first assessment of the transformer condition is obtained in the form of a dissolved gas analysis (DGA) diagnosis according IEC 60599. As a second step, a knowledge mining procedure is performed, by conducting surveys whose results are fed into a first Type-2 Fuzzy Logic System (T2-FLS), in order to initially evaluate the condition of the equipment taking only the results of dissolved gas analysis into account. The output of this first T2-FLS is used as the input of a second T2-FLS, which additionally weighs up the condition of the paper-oil system. The output of this last T2-FLS is given in terms of words easily understandable by the maintenance personnel. The proposed assessing methodology has been validated for several cases of transformers in service. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: This in situ study evaluated the discriminatory power and reliability of methods of dental plaque quantification and the relationship between visual indices (VI) and fluorescence camera (FC) to detect plaque. MATERIAL AND METHODS: Six volunteers used palatal appliances with six bovine enamel blocks presenting different stages of plaque accumulation. The presence of plaque with and without disclosing was assessed using VI. Images were obtained with FC and digital camera in both conditions. The area covered by plaque was assessed. Examinations were done by two independent examiners. Data were analyzed by Kruskal-Wallis and Kappa tests to compare different conditions of samples and to assess the inter-examiner reproducibility. RESULTS: Some methods presented adequate reproducibility. The Turesky index and the assessment of area covered by disclosed plaque in the FC images presented the highest discriminatory powers. CONCLUSION: The Turesky index and images with FC with disclosing present good reliability and discriminatory power in quantifying dental plaque.
Resumo:
Nickel-based super alloys are used in a variety of applications in which high-temperature strength and resistance to creep, corrosion, and oxidation are required, such as in aircraft gas turbines, combustion chambers, and automotive engine valves. The properties that make these materials suitable for these applications also make them difficult to grind. Grinding systems for such materials are often built around vitrified cBN (cubic boron nitride) wheels to realize maximum productivity and minimum cost per part. Conditions that yield the most economical combination of stock removal rate and wheel wear are key to the successful implementation of the grinding system. Identifying the transition point for excessive wheel wear is important. The aim of this study is to compare the performance of different cBN wheels when grinding difficult-to-grind (DTG) materials by determining the 'wheel wear characteristic curve', which correlates the G-ratio to the calculated tangential force per abrasive grain. With the proposed methodology, a threshold force per grit above which the wheel wear rate increases rapidly can be quickly identified. A comparison of performance for two abrasive product formulations in the grinding of three materials is presented. The obtained results can be applied for the development of grinding applications for DTG materials.
Resumo:
This work deals with an improved plane frame formulation whose exact dynamic stiffness matrix (DSM) presents, uniquely, null determinant for the natural frequencies. In comparison with the classical DSM, the formulation herein presented has some major advantages: local mode shapes are preserved in the formulation so that, for any positive frequency, the DSM will never be ill-conditioned; in the absence of poles, it is possible to employ the secant method in order to have a more computationally efficient eigenvalue extraction procedure. Applying the procedure to the more general case of Timoshenko beams, we introduce a new technique, named ""power deflation"", that makes the secant method suitable for the transcendental nonlinear eigenvalue problems based on the improved DSM. In order to avoid overflow occurrences that can hinder the secant method iterations, limiting frequencies are formulated, with scaling also applied to the eigenvalue problem. Comparisons with results available in the literature demonstrate the strength of the proposed method. Computational efficiency is compared with solutions obtained both by FEM and by the Wittrick-Williams algorithm.
Resumo:
Much of social science literature about South African cities fails to represent its complex spectrum of sexual practices and associated identities. The unintended effects of such representations are that a compulsory heterosexuality is naturalised in, and reiterative with, dominant constructions of blackness in townships. In this paper, we argue that the assertion of discreet lesbian and gay identities in black townships of a South African city such as Cape Town is influenced by the historical racial and socio-economic divides that have marked urban landscape. In their efforts to recoup a positive sense of gendered personhood, residents have constructed a moral economy anchored in reproductive heterosexuality. We draw upon ethnographic data to show how sexual minorities live their lives vicariously in spaces they have prised open within the extant sex/gender binary. They are able to assert the identities of moffie and man-vrou (mannish woman) without threatening the dominant ideology of heterosexuality.
Resumo:
Background Data and Objective: Herpes is a common infectious disease that is caused by human herpesviruses. Several treatments have been proposed, but none of them prevent reactivation of the virus. This article describes the use of photodynamic therapy (PDT) as a treatment for herpes lesions, and reports on four cases. Materials and Methods: PDT was used as an adjuvant therapy for the treatment of herpes labialis in four patients. A special type of 0.01% (m/V) of methylene blue solution was applied to the vesicular stage of herpesviral disease and the lesions were irradiated with laser energy (wavelength 660 nm, energy density 120 J/cm(2), output power of 40 mW, 2 min per point, 4.8 J of energy/point, at four points). After 24 h the patients returned and phototherapy was repeated with the same equipment, this time with 3.8 J/cm(2) and 15 mW, for a total dose of 0.6 J. The same procedure was repeated 72 h and 1 wk later. Results: Treatment with low-level laser therapy can be considered as an option in the treatment of herpes labialis, and decreases the frequency of vesicle recurrence and provides comfort for patients. No significant acute side effects were noted and the lesions healed rapidly. Conclusion: Treatment of herpes labialis with PDT was effective, had no side effects, and when associated with laser phototherapy, accelerated the healing process.
Resumo:
We describe the design and implementation of a high voltage pulse power supply (pulser) that supports the operation of a repetitively pulsed filtered vacuum arc plasma deposition facility in plasma immersion ion implantation and deposition (Mepiiid) mode. Negative pulses (micropulses) of up to 20 kV in magnitude and 20 A peak current are provided in gated pulse packets (macropulses) over a broad range of possible pulse width and duty cycle. Application of the system consisting of filtered vacuum arc and high voltage pulser is demonstrated by forming diamond-like carbon (DLC) thin films with and without substrate bias provided by the pulser. Significantly enhanced film/substrate adhesion is observed when the pulser is used to induce interface mixing between the DLC film and the underlying Si substrate. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518969]
Resumo:
At the 2008 Summer Olympics in Beijing, Usain Bolt broke the world record for the 100 m sprint. Just one year later, at the 2009 World Championships in Athletics in Berlin he broke it again. A few months after Beijing, Eriksen [Am. J. Phys. 77, 224-228 (2009)] studied Bolt's performance and predicted that Bolt could have run about one-tenth of a second faster, which was confirmed in Berlin. In this paper we extend the analysis of Eriksen to model Bolt's velocity time dependence for the Beijing 2008 and Berlin 2009 records. We deduce the maximum force, the maximum power, and the total mechanical energy produced by Bolt in both races. Surprisingly, we conclude that all of these values were smaller in 2009 than in 2008.
Resumo:
Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.
Resumo:
Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C(l), this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C(l)'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l = 7 and l = 8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.