7 resultados para Power Differential Scale
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Estimating the sizes of hard-to-count populations is a challenging and important problem that occurs frequently in social science, public health, and public policy. This problem is particularly pressing in HIV/AIDS research because estimates of the sizes of the most at-risk populations-illicit drug users, men who have sex with men, and sex workers-are needed for designing, evaluating, and funding programs to curb the spread of the disease. A promising new approach in this area is the network scale-up method, which uses information about the personal networks of respondents to make population size estimates. However, if the target population has low social visibility, as is likely to be the case in HIV/AIDS research, scale-up estimates will be too low. In this paper we develop a game-like activity that we call the game of contacts in order to estimate the social visibility of groups, and report results from a study of heavy drug users in Curitiba, Brazil (n = 294). The game produced estimates of social visibility that were consistent with qualitative expectations but of surprising magnitude. Further, a number of checks suggest that the data are high-quality. While motivated by the specific problem of population size estimation, our method could be used by researchers more broadly and adds to long-standing efforts to combine the richness of social network analysis with the power and scale of sample surveys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In [3], Bratti and Takagi conjectured that a first order differential operator S=11 +...+ nn+ with 1,..., n, {x1,..., xn} does not generate a cyclic maximal left (or right) ideal of the ring of differential operators. This is contrary to the case of the Weyl algebra, i.e., the ring of differential operators over the polynomial ring [x1,..., xn]. In this case, we know that such cyclic maximal ideals do exist. In this article, we prove several special cases of the conjecture of Bratti and Takagi.
Resumo:
Large-scale simulations of parts of the brain using detailed neuronal models to improve our understanding of brain functions are becoming a reality with the usage of supercomputers and large clusters. However, the high acquisition and maintenance cost of these computers, including the physical space, air conditioning, and electrical power, limits the number of simulations of this kind that scientists can perform. Modern commodity graphical cards, based on the CUDA platform, contain graphical processing units (GPUs) composed of hundreds of processors that can simultaneously execute thousands of threads and thus constitute a low-cost solution for many high-performance computing applications. In this work, we present a CUDA algorithm that enables the execution, on multiple GPUs, of simulations of large-scale networks composed of biologically realistic Hodgkin-Huxley neurons. The algorithm represents each neuron as a CUDA thread, which solves the set of coupled differential equations that model each neuron. Communication among neurons located in different GPUs is coordinated by the CPU. We obtained speedups of 40 for the simulation of 200k neurons that received random external input and speedups of 9 for a network with 200k neurons and 20M neuronal connections, in a single computer with two graphic boards with two GPUs each, when compared with a modern quad-core CPU. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Objective: The aim of this study was to verify the discriminative power of the most widely used pain assessment instruments. Methods: The sample consisted of 279 subjects divided into Fibromyalgia Group (FM- 205 patients with fibromyalgia) and Control Group (CG-74 healthy subjects), mean age 49.29 +/- 10.76 years. Only 9 subjects were male, 6 in FM and 3 in CG. FM were outpatients from the Rheumatology Clinic of the University of Sao Paulo - Hospital das Clinicas (HCFMUSP); the CG included people accompanying patients and hospital staff with similar socio-demographic characteristics. Three instruments were used to assess pain: the McGill Pain Questionnaire (MPQ), the Visual Analog Scale (VAS), and the Dolorimetry, to measure pain threshold on tender points (generating the TP index). In order to assess the discriminative power of the instruments, the measurements obtained were submitted to descriptive analysis and inferential analysis using ROC Curve - sensibility (S), specificity (S I) and area under the curve (AUC) - and Contingence tables with Chi-square Test and odds ratio. Significance level was 0.05. Results: Higher sensibility, specificity and area under the curve was obtained by VAS (80%, 80% and 0.864, respectively), followed by Dolorimetry (S 77%, S177% and AUC 0.851), McGill Sensory (S 72%, S167% and AUC 0.765) and McGill Affective (S 69%, S1 67% and AUC 0.753). Conclusions: VAS presented the higher sensibility, specificity and AUC, showing the greatest discriminative power among the instruments. However, these values are considerably similar to those of Dolorimetry.
Resumo:
So Paulo is the most developed state in Brazil and contains few fragments of native ecosystems, generally surrounded by intensive agriculture lands. Despite this, some areas still shelter large native animals. We aimed at understanding how medium and large carnivores use a mosaic landscape of forest/savanna and agroecosystems, and how the species respond to different landscape parameters (percentage of landcover and edge density), in a multi-scale perspective. The response variables were: species richness, carnivore frequency and frequency for the three most recorded species (Puma concolor, Chrysocyon brachyurus and Leopardus pardalis). We compared 11 competing models using Akaike`s information criterion (AIC) and assessed model support using weight of AIC. Concurrent models were combinations of landcover types (native vegetation, ""cerrado"" formations, ""cerrado"" and eucalypt plantation), landscape feature (percentage of landcover and edge density) and spatial scale. Herein, spatial scale refers to the radius around a sampling point defining a circular landscape. The scales analyzed were 250 (fine), 1,000 (medium) and 2,000 m (coarse). The shape of curves for response variables (linear, exponential and power) was also assessed. Our results indicate that species with high mobility, P. concolor and C. brachyurus, were best explained by edge density of the native vegetation at a coarse scale (2,000 m). The relationship between P. concolor and C. brachyurus frequency had a negative power-shaped response to explanatory variables. This general trend was also observed for species richness and carnivore frequency. Species richness and P. concolor frequency were also well explained by a second concurrent model: edge density of cerrado at the fine (250 m) scale. A different response was recorded for L. pardalis, as the frequency was best explained for the amount of cerrado at the fine (250 m) scale. The curve of response was linearly positive. The contrasting results (P. concolor and C. brachyurus vs L. pardalis) may be due to the much higher mobility of the two first species, in comparison with the third. Still, L. pardalis requires habitat with higher quality when compared with other two species. This study highlights the importance of considering multiple spatial scales when evaluating species responses to different habitats. An important and new finding was the prevalence of edge density over the habitat extension to explain overall carnivore distribution, a key information for planning and management of protected areas.
Resumo:
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.