22 resultados para Powder mixtures
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Powder mixtures (1:1) of tibolone polymorphic forms I (monoclinic) and II (triclinic) and excipients have been prepared and compacted. The samples were stored at 50 degrees C and 90% RH for one month and subsequently were evaluated using differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC). The results indicate that during the compaction, the applied pressure reduced the chemical stability of tibolone in both polymorph forms. The triclinic form was more chemically unstable, both pure and in contact with excipients, than the monoclinic form. Lactose monohydrate was shown to reduce chemical degradation for both forms. Ascorbyl palmitate was shown to affect the tibolone stability differently depending on the polymorphic form used.
Resumo:
Milk supplementation with milk proteins in four different levels was used to investigate the effect on acidification and textural properties of yogurt. Commercial skim milk powder was diluted in distilled water, and the supplements were added to give different enriched-milk bases; these were heat treated at 90 degrees C for 5 min. These mixtures were incubated with the bacterial cultures for fermentation in a water bath, at 42 degrees C, until pH 4.50 was reached. Chemical changes during fermentation were followed by measuring the pH. Protein concentration measurements, microbial counts of Lactobacillus bulgaricus and Streptococcus thermophilus, and textural properties (G`, G ``, yield stress and firmness) were determined after 24 h of storage at 4 degrees C. Yogurt made with milk supplemented with sodium caseinate resulted in significant properties changes, which were decrease in fermentation time, and increase in yield stress, storage modulus, and firmness, with increases in supplement level. Microstructure also differed from that of yogurt produced with milk supplemented with skim milk powder or sodium caseinate. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The regular use of mouthrinses, particularly when combined with the use of air-powder polishing, could affect the appearance of tooth-colored restorations. The current study sought to evaluate the effect of NaHCO(3) powder on translucency of a microfilled composite resin immersed in different mouthrinses, at distinct evaluation periods. Eighty disk-shaped specimens of composite resin (Durafill VS, Heraeus Kulzer GmbH & Co. KG, Hanau, Germany) were prepared. The composite specimens were then randomly allocated into two groups according to the surface treatment: exposure to NaHCO(3) powder (10 seconds) or nonexposure, and they were randomly assigned into four subgroups, according to the mouthrinses employed (N = 10): Periogard (Colgate/Palmolive, Sao Bernardo do Campo, SP, Brazil), Cepacol (Aventis Pharma, Sao Paulo, SP, Brazil), Plax (Colgate/Palmolive), and distilled water (control group). The samples were immersed for 2 minutes daily, 5 days per week, over a 4-month test period. Translucency was measured with a transmission densitometer at seven evaluation periods. Statistical analyses (analysis of variance and Tukey`s test) revealed that: distilled water presented higher translucency values (86.72%); Periogard demonstrated the lowest translucency values (72.70%); and Plax (74.05%) and Cepacol (73.32%) showed intermediate translucency values, which were statistically similar between them (p > 0.01). NaHCO(3) air-powder polishing increased the changes in translucency associated with the mouthrinses. Air-powder polishing alone had no effect on material translucency. Translucency percent was gradually decreased from 1 week of immersion up to 4 months. It may be concluded that the NaHCO(3) powder and the tested mouthrinses have affected the translucency of microfilled composite resin, according to the tested time. CLINICAL SIGNIFICANCE During the last decade, the demand for composite resin restorations has grown considerably, however, controversy persists regarding the effect of surface roughness on color stability.
Resumo:
The objective of this study was to apply response surface methodology to estimate the emulsifying capacity and stability of mixtures containing isolated and textured soybean proteins combined with pectin and to evaluate if the extrusion process affects these interfacial properties. A simplex-centroid design was applied to the model emulsifying activity index (EAI), average droplet size (D-[4.3]) and creaming inhibition (Cl%) of the mixtures. All models were significant and able to explain more than 86% of the variation. The high predictive capacity of the models was also confirmed. The mean values for EAI, D-[4.3] and Cl% observed in all assays were 0.173 +/- 0.015 mn, 19.2 +/- 1.0 mu m and 53.3 +/- 2.6%, respectively. No synergism was observed between the three compounds. This result can be attributed to the low soybean protein solubility at pH 6.2 (<35%). Pectin was the most important variable for improving all responses. The emulsifying capacity of the mixture increased 41% after extrusion. Our results showed that pectin could substitute or improve the emulsifying properties of the soybean proteins and that the extrusion brings additional advantage to interfacial properties of this combination. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Biocomposites with two different fillers, garlic and wheat bran, were studied. They were based on cassava starch and contained glycerol as a plasticizer and potassium sorbate as an antimicrobial agent and were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and infrared spectroscopy (IR). The mechanical performance at room and lower temperatures was also studied. SEM micrographies of fractured surfaces of the wheat bran composite films showed some ruptured particles of fiber while fibrils of garlic on the order of nanometers were observed when garlic composite films were studied. Mechanical tests, at room temperature, showed that the addition of wheat bran led to an increment in the storage modulus (E`) and hardening and a decrease in Tan delta, while the garlic composite showed a diminishing in the E` and hardening and did not produce significant changes in Tan delta values when compared with systems without fillers (matrix). In the range between -90 degrees C and 20 degrees C. all the materials studied presented two peaks in the Tan delta curve. In the case of the wheat bran composite, both relaxation peaks shifted slightly to higher temperatures, broadened and diminished their intensity when compared with those of the matrix; however garlic composite showed a similar behavior to the matrix. DSC thermograms of aqueous systems showed a slight shift of gelatinization temperature (T(gelatinization)) to higher values when the fillers were present. Thermograms of films showed that both, garlic and wheat bran composites, had a lower melting point than the matrix. IR data indicated that interaction between starch and fillers determined an increase in the availability of hydroxyl groups to be involved in a dynamic exchange with water. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The utilization of protein hydrolysates in food systems is frequently hindered due to their bitterness and hygroscopicity. Spray drying technology could be an alternative for reducing these problems. The aim of this work was to reduce or to mask the casein hydrolysate bitter taste using spray drying and mixtures of gelatin and soy protein isolate (SPI) as carriers. Six formulations were studied: three with 20% of hydrolysate and 80% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%) and three with 30% of hydrolysate and 70% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%). The spray-dried formulations were evaluated by SEM, hygroscopicity, thermal behavior (DSC), dissolution, and bitter taste, by a trained sensory panel using a paired-comparison test (free samples vs. spray-dried samples); all samples were presented in powder form. SEM analysis showed mostly spherically shaped particles, with many concavities and some particles with pores. All formulations were oil and water compatible and showed lower hygroscopicity values than free casein hydrolysate. At Aw 0.83, the free hydrolysate showed Tg about 25 degrees C lower than the formulations, indicating that the formulations may be more stable at Aw >= 0.65 since the glass transition should be prevented. The sensory panel found the formulations, tasted in the powder form, to be less bitter (P < 0.05) than the free casein hydrolysate. These results indicated that spray drying of casein hydrolysate with mixtures of gelatin and SPI was successful to attenuate the bitterness of casein hydrolysate. Thus, spray drying widens the possibilities of application of casein hydrolysates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Three different types of maltodextrin encapsulated dehydrated blackberry fruit powders were obtained using vibrofluidized bed drying (VF), spray drying (SD), vacuum drying (VD), and freeze drying (FD). Moisture equilibrium data of blackberry pulp powders with 18% maltodextrin were determined at 20, 30, 40, and 50 degrees C using the static gravimetric method for the water activity range of 0.06-0.90. Experimental equilibrium moisture content data versus water activity were fit to the Guggenheim-Anderson-de Boer (GAB) model. Agreement was found between experimental and calculated values. The isosteric heat of sorption of water was determined using the Clausius-Clapeyron equation from the equilibrium data; isosteric heats of sorption were found to increase with increasing temperature and could be adjusted by an exponential relationship. For freeze dried, vibrofluidized, and vacuum dried pulp powder samples, the isosteric heats of sorption were lower (more negative) than those calculated for spray dried samples. The enthalpy-entropy compensation theory was applied to sorption isotherms and plots of Delta H versus Delta S provided the isokinetic temperatures, indicating an enthalpy-controlled sorption process.
Resumo:
P>In this study, physical characteristics of goat milk powder produced with the addition of soy lecithin at levels of 0 (control), 0.4, 0.8 and 1.0 g lecithin/100 g of total solids in concentrated milk before the spray drying process were investigated. Goat milk was pasteurised, concentrated at 40% of total solids, spray dried and packed in plastic bags under vaccum conditions. Lecithin addition decreased the wetting time of milk powders, although no influence was observed on dispersibility, water sorption, water activity and particle size distribution of the powders. Powders with higher levels of lecithin showed significantly lower brightness, with a greater intensity of yellow colour. It was concluded that lecithin addition before spray drying process at the minimal proportion in concentrated milk of 0.4 g lecithin/100 g of total solids in concentrated milk is useful for achieving more rapid wetting time of goat milk powder.
Resumo:
This study presents the in-vivo evaluation of Ti-13Nb-13Zr alloy implants obtained by the hydride route via powder metallurgy. The cylindrical implants were processed at different sintering and holding times. The implants` were characterized for density, microstructure (SEM), crystalline phases (XRD), and bulk (EDS) and surface composition (XPS). The implants were then sterilized and surgically placed in the central region of the rabbit`s tibiae. Two double fluorescent markers were applied at 2 and 3 weeks, and 6 and 7 weeks after implantation. After an 8-week healing period, the implants were retrieved, non-decalcified section processed, and evaluated by electron, UV light (fluorescent labeling), and light microscopy (toluidine blue). BSE-SEM showed close contact between bone and implants. Fluorescent labeling assessment showed high bone activity levels at regions close to the implant surface. Toluidine blue staining revealed regions comprising osteoblasts at regions of newly forming/formed bone close to the implant surface. The results obtained in this study support biocompatible and osseoconductive properties of Ti-13Nb-13Zr processed through the hydride powder route. (c) 2007 Published by Elsevier B.V.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A robust, direct, rapid and non-destructive X-ray diffraction crystallography method to detect the polyprenylated benzophenones 7-epi-clusianone (1) and guttiferone A (2) in extracts from Garcinia brasiliensis is presented. Powder samples of benzophenones 1 and 2, dried hexane extracts from G. brasiliensis seeds and fruit`s pericarp, and the dried ethanolic extract from G. brasiliensis seeds were unambiguously characterized by powder X-ray diffractometry. The calculated X-ray diffraction peaks from crystal structures of analytes 1 and 2, previously determined by single-crystal X-ray diffraction technique, were overlaid to those of the experimental powder diffractograms, providing a practical identification of these compounds in the analyzed material and confirming the pure contents of the powder samples. Using the X-ray diffraction crystallography method, the studied polyprenylated benzophenones were selectively and simultaneously detected in the extracts which were mounted directly on sample holder. In addition, reference materials of the analytes were not required for analyses since the crystal structures of the compounds are known. High performance liquid chromatography analyses also were comparatively carried out to quantify the analytes in the same plant extracts showing to be in agreement with X-ray diffraction crystallography method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Scale mixtures of the skew-normal (SMSN) distribution is a class of asymmetric thick-tailed distributions that includes the skew-normal (SN) distribution as a special case. The main advantage of these classes of distributions is that they are easy to simulate and have a nice hierarchical representation facilitating easy implementation of the expectation-maximization algorithm for the maximum-likelihood estimation. In this paper, we assume an SMSN distribution for the unobserved value of the covariates and a symmetric scale mixtures of the normal distribution for the error term of the model. This provides a robust alternative to parameter estimation in multivariate measurement error models. Specific distributions examined include univariate and multivariate versions of the SN, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Resumo:
We present a Bayesian approach for modeling heterogeneous data and estimate multimodal densities using mixtures of Skew Student-t-Normal distributions [Gomez, H.W., Venegas, O., Bolfarine, H., 2007. Skew-symmetric distributions generated by the distribution function of the normal distribution. Environmetrics 18, 395-407]. A stochastic representation that is useful for implementing a MCMC-type algorithm and results about existence of posterior moments are obtained. Marginal likelihood approximations are obtained, in order to compare mixture models with different number of component densities. Data sets concerning the Gross Domestic Product per capita (Human Development Report) and body mass index (National Health and Nutrition Examination Survey), previously studied in the related literature, are analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.